물-에너지-환경 넥서스 연구(2차년도): 도시 여건, 외부영향 및 운영 율이 리 म 영 Ъ 시테 П え ヒ

2021. 12

United Nations Educational, Scientific and Cultural Organization

물-에너지-환경 넥서스 연구(2차년도): 도시 여건, 외부영향 및 운영관리 효율이 도시 물순환 시스템에 미치는 영향

The Effect of City Conditions, External Influences, and O&M Efficiency on Urban Water System from the perspective of Nexus

2021. 12

United Nations Educational, Scientific and Water Security and Cultural Organization Sustainable Management

International Centre for

제 출 문

이 보고서를 2021년도 UNESCO i-WSSM에서 수행한 "물-에너지-환경 넥서스 연구(2차년도): 도시 여건, 외부영향 및 운영관리 효율이 도시 물순환 시스템에 미 치는 영향"의 연구보고서로 제출합니다.

2021 12. 28

연구책임자 :	UNESCO i-WSSM	팀	장	신 은 허
연구수행자 :	UNESCO i-WSSM	전 문	관	최 서 형

요 약 문

1. 연구제목

물-에너지-환경 넥서스 연구(2차년도): 도시 여건, 외부영향 및 운영관리 효율이 도시 물순환 시스템에 미치는 영향

2. 연구기간

2020. 5. 1 \sim 2020. 12. 31

3. 연구목적

본 2차년도 연구에서는 기존 문헌에서 제시된 도시 물순환 시스템의 공정별 에너지 인텐시티를 조사하여 에너지 인텐시티 매트릭스를 구성하였으며, 시스템 다이나믹스를 적 용하여 물-에너지-환경 넥서스 모델을 개발하고, 여러 요인 및 시나리오에 따른 도시 물 순환 시스템 내에서 자원의 양적·질적 사용을 분석하여, 현재 도시의 상태를 벤치마킹 할 수 있는 가이드라인을 제시하였다. 이를 통하여 넥서스 관점에서 도시 물순환 시스템의 효율적인 자원 관리 전략 및 실행 계획을 도출하는 것을 연구 목적으로 하였다. 이를 위 해 아래와 같은 세부 연구 목표를 수립하였다.

- 기존 도시 물순환 시스템의 문헌을 조사를 통하여 도시 물순환 시스템 공정별 에너
 지 인텐시티 매트릭스 구축 및 기술통계 값 도출
- 도시 물순환 시스템 내 변수들의 변동에 따른 물 사용량(총 사용수량, 유수수량, 실 사용수량)과 에너지 사용량(총 에너지 사용량), 그리고 그에 따른 다양한 에너지 인 텐시티(총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너 지 인텐시티)의 변화 분석
- 기존 문헌들의 도시 물순환 시스템의 각 단계별 에너지 인텐시티 값을 기준으로하여
 총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티 및 실 사용수량 에너지 인 텐시티 관점에서 도시를 분류할 수 있는 가이드라인 제시
- 해당 도시의 여건에 따라서 도시 물순환 시스템의 외부 영향 및 운영효율 변동 시나 리오에 따른 자원의 사용량 및 효율 변동을 시계열 분석 수행

4. 연구내용

가. 에너지 인텐시티 매트릭스 구축

- 도시 물순환 전체 시스템, 상수 시스템 및 하수 시스템의 에너지 인텐시티 조사

및 분석

- 지하수 취수, 지표수 도수, 취수와 도수, 전체 정수처리 공정, 지표수 정수 처리, 지하수 정수 처리, 담수화, 배·급수, 용수 사용, 하수 집수, 하수 처리, 용수 재이용
 및 방류 공정별 에너지 인텐시티 조사 및 분석
- 정수처리 및 하수처리 세부 단위 공정별 에너지 인텐시티 조사 및 분석
- 관로 이송 시 이론적인 에너지 인텐시티 조사
- 나. 변동 요인 분석
 - 도시 물순환 시스템을 구성하는 변수들(인구, 취수원 비율, 도시 에너지 인텐시티 여건, 누수율)의 값의 변동에 따른 물 사용량(총 사용수량, 유수수량, 실 시용수량), 에너지 사용량(총 에너지 사용량) 및 각각의 에너지 인텐시티(총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인텐시티) 분석
- 다. 도시 분류 가이드라인 제시
 - 문헌 조사에 따라서 도시 물순환 시스템의 공정별 에너지 인텐시티의 일 사분위
 수, 중위값, 삼 사분위수 값으로 구성된 모델을 일정 인구(5만, 25만, 50만), 지하수
 취수비율(50%) 및 물손실(0.3)의 경우에 분석
 - 분석된 결과에 따른 총 사용수량, 유수수량 및 실 사용수량 에너지 인텐시티 관점 의 도시를 뛰어남(Excellent), 좋음(Good), 좋지 않음(Poor), 나쁨(Bad)의 4가지 단계 로 분류
- 라. 도시 여건에 따른 외부영향 및 운영효율 변동 시나리오 분석
 - 인구(5만, 25만, 50만)와 해당 도시 에너지 인텐시티(취약, 보통, 강건)에 따라 9개 의 도시 여건으로 분류
 - 외부사항 변동 2개 시나리오와(변동 없음, 변동 있음)와 운영효율 관리 3개 시나리 오(개선, 유지, 악화)를 고려하여 총 54개의 시나리오 분석

5. 연구결과

가. 에너지 인텐시티 매트릭스 구축

- 문헌에서 제시된 도시 물순환 시스템의 공정별 에너지 인텐시티를 조사하여 에너
 지 인텐시티 매트릭스를 구축
- 도시물순환 시스템 전체 시스템, 상수 시스템, 하수 시스템의 에너지 인텐시티 중
 앙값은 각각 1.210 kWh/m³, 0.519 kWh/m³, 0.580 kWh/m³의 값을 나타냄
- 지하수의 취수, 지표수 도수, 지표수 정수처리, 담수화, 배·급수, 용수 사용, 하수 집수, 하수처리, 용수 재이용 및 방류 공정의 에너지 인텐시티 중앙값은 각각 0.505 kWh/m³, 0.370 kWh/m³, 0.382 kWh/m³, 3.170 kWh/m³, 0.255 kWh/m³, 3.211 kWh/m³, 0.061 kWh/m³, 0.440 kWh/m³, 0.820 kWh/m³, 0.054 kWh/m³의 값을 보임
- 각각의 공정들을 살펴보면 기후변화와 같은 외부 영향에 의해 수자원이 부족할 경

우 도입되는 담수화와 물 재이용은 많은 에너지를 필요로 하였으며, 용수 사용을 제외하고 가장 높은 값을 나타내었음

- 정수처리와 하수처리와 같은 처리 공정과 펌프 에너지를 필요로 하는 지하수 취수,
 도수, 배·급수 공정에서 일정부분 이상의 에너지를 필요로 함
- 중력을 이용하는 경우가 많은 하수 집수와 방류 시 필요 에너지는 매우 낮은 값을
 나타내었음
- 나. 변동 요인 분석
 - 인구의 증가에 따라 각각의 인텐시티(총 사용수량 에너지 인텐시티, 유수수량 에너
 지 인텐시티, 실 사용수량 에너지 인텐시티)는 동일한 기울기 값을 나타내는 지점
 으로 이동
 - 취수원의 비율 및 에너지 인텐시티의 여건에 따라서 각각의 인텐시티들은 수직 방
 향으로 이동
 - 누수율의 변동에 따라서 총 사용수량 에너지 인텐시티는 기존의 인텐시티 값보다
 낮은 기울기의 선에 따라 이동하였고, 유수수량 에너지 인텐시티는 거의 수직으로
 이동하였으며, 실 사용수량 에너지 인텐시티는 수직으로 이동
 - 총 사용수량과 에너지 사용량을 분석하는 경우 양적인 측면 분석에서는 적합한 방법이지만 효율적인 측면에서는 왜곡된 현상이 나타남
 - 실 사용수량 에너지 인텐시티는 효율을 분석하는데 적합한 지표
 - 변수의 변동에 따른 물과 에너지 자원 사용의 양적인 측면과 질적인 측면의 변화
 를 파악할 수 있으며, 넥서스 관점에서 어떻게 도시 물순환 시스템을 관리해야하
 는지에 대한 일차적인 방향을 제시할 수 있음
- 다. 도시 분류 가이드라인 제시
 - 문헌들에서 제시된 도시 물순환 시스템의 각 단계별 에너지 인텐시티 값에 따라서
 총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티 및 실 사용수량 에너지
 인텐시티 관점에서 도시를 분류
 - 총 사용수량, 유수수량 및 실 사용수량 에너지 인텐시티 관점의 도시를 크게 뛰어 남(Excellent), 좋음(Good), 좋지 않음(Poor), 나쁨(Bad)의 4가지 단계로 구분
 - 제시된 도시 분류는 도시 물순환 시스템의 넥서스 관점의 효율적인 측면에서 해당
 도시의 전 세계 다른 도시와 비교를 통해 수준을 파악하는데 유용한 벤치마킹 수
 단이 될 수 있음
- 라. 도시 여건에 따른 외부영향 및 운영효율 변동 시나리오 분석
 - 해당 도시의 여건에 따라서 도시 물순환 시스템의 외부 영향 및 운영효율 변동 시
 나리오에 따른 자원의 사용량 및 효율의 변동을 10년 기간 동안 분석
 - 부정적인 외부 영향은 도시 물순환 시스템의 효율적인 측면을 악화시키며, 부정적
 인 운영 효율은 양적인 측면에서 악영향을 미치는 것을 알 수 있었음

- 시간에 따른 도시의 효율 변동의 궤적을 추적할 수 있어 도시 물순환 시스템의 전
 략 및 실행계획을 수립하는데 활용될 수 있음
- 도시 여건, 외부영향 및 운영효율 변동 시나리오 분석 결과를 통해 도시 물순환
 시스템 관련 의사 결정권자는 본인들의 시스템이 어떻게 변동될지 예측할 수 있으
 며, 이에 따라 효율적인 전략 및 프로그램을 수립할 수 있음

SUMMARY

1. Project Title/Subtitle

The Effect of City Conditions, External Influences, and O&M Efficiency on Urban Water System from the perspective of Nexus

2. Research Period

2020. 5. 1 \sim 2020. 12. 31

3. Objectives of Research

This research aims to develop an energy intensity matrix by investigating existing energy intensity worldwide in urban water system (UWS), develop a water-energy-environment nexus model by using system dynamics and suggest UWS guidelines for water and energy use by quantitative and qualitative analysis with different effecting factors and scenarios. Through this research, we try to derive an efficient water and energy management strategy and implementation plan for UWS from the perspective of Nexus.

The specific objectives are as follows:

- Building energy intensity matrix of each process in UWS using the existing literature
- Analyzing water consumption such as total water use (TWU), revenue water (RW), and total water use (TWU) and energy consumption just like total energy use (TEU), and energy intensity such as total water use energy intensity (TWUEI), revenue water energy intensity (RWEI), and actual water use energy intensity (AWUEI)
- Suggesting water and energy management guidelines for UWS to classify cities from the perspective of TEUEI, RWEI, and AWUEI
- Time series analysis of changes in resource consumption and efficiency according to external impacts and operating efficiency scenarios in UWS

4. Content, Scope, and Method of Research

- A. Building an Energy Intensity Matrix
 - Investigation and analyzing energy intensity in the water supply system, sewage system, and UWS
 - Investigation and analyzing energy intensity in abstraction (groundwater, surface water), surface water conveyance, water treatment (surface water, groundwater, desalination), transmission and distribution, wastewater collection, wastewater treatment, water reuse, and discharge processes
 - Investigation and analyzing energy intensity in detailed water treatment and wastewater

treatment processes

- Investigating theoretical energy loss estimation in the pipeline
- B. Analysis of Affecting Factors on Water and Energy Use in UWS
 - Analysis of water consumption (TWU, RW, AWU), energy consumption (TEU), and each energy intensity (TWUEI, RWEI, AWUEI) according to effecting factors such as population, water intake ratio of groundwater and surface water, city energy use status, and water leakage rate on water and energy use in UWS
- C. Suggesting Water and Energy Management Guidelines for UWS
 - Based on the energy intensity matrix, modeling the UWS with 1st quartile, median, and 3rd quartile of energy intensity in each process for a population of 50,000, 250,000, and 500,000, groundwater intake ratio of 50% and water loss rate of 0.3
 - Cities are classified into four levels: Excellent, Good, Poor, and Bad city
- D. Scenario Analysis of External Impact and Operating Efficiency in Different Energy Status on Water and Energy Use in UWS
 - Population (50,000, 250,000, and 500,000) and energy status (vulnerable, moderate, robust) of the city are considered for city energy status
 - Analyzing a total of 54 scenarios considering two scenarios (no change, change) of external conditions and three scenarios (improvement, maintenance, deterioration) for operational efficiency management in nine city energy status
- 5. Research Results
 - A. Building an Energy Intensity Matrix
 - The median energy intensity of the urban water system, water supply system and wastewater system were calculated as 1.210 kWh/m³, 0.519 kWh/m³, and 0.580 kWh/m³, respectively
 - The median energy intensity of groundwater intake, conveyance, surface water treatment, desalination, transmission and distribution, end-use, wastewater collection, wastewater treatment, water reuse, and discharge processes were 0.505 kWh/m³, 0.370 kWh/m³, 0.382 kWh/m³, 0.255 kWh/m³, 3.211/m³, 0.403 kWh/m³, 0.05 kWh/m³, and 0.403 kWh/m³, respectively
 - Desalination and water reuse showed the highest value except for end-use in UWS; The need for desalination and water reuse is gradually increasing due to external impacts such as climate change and population growth
 - Water treatment and wastewater treatment processes need energy for detailed treatment processes, while groundwater intake, conveyance, and transmission and distribution

require energy for pumping

- The energy required for wastewater collection and discharge can be negligible due it mainly uses gravity

B. Analysis of Affecting Factors on Water and Energy Use in UWS

- With population growth, the initial location of each energy intensity (TWUEI, RWEI, AWUEI) shifted to a point with a similar slope in water and energy use profile
- Depending on the groundwater intake ratio and the city energy intensity status, each intensity shifted toward the vertical direction in the water and energy use profile
- With the increase in the water leakage rate, TWUEI moved to a point with a lower slope than an initial point, while RWEI shifted nearly vertically, and the AWUEI moved vertically
- TWUEI, which is widely used, is an efficient indicator in quantitative estimation for water and energy use in UWS; however, bias occurs in terms of quality assessment.
- AWUEI has been proven to be an efficient indicator in terms of quantitative and quality resource use assessment in UWS
- C. Suggesting Water and Energy Management Guidelines for UWS
 - Based on the existing literature research, guidelines for dividing cities into four stages (excellent, good, poor, and bad) from the perspective of TWUEI, RWEI, and AWUEI were suggested
 - The proposed classification can be a useful benchmarking tool for identifying benchmarking city's water and energy use status by comparing the city to others in the guideline
- D. Scenario Analysis of External Impact and Operating Efficiency in Different Energy Status on Water and Energy Use in UWS
 - Analyzing changes in water and energy consumption amount and efficiency due to the external impact and operating efficiency in UWS for ten years
 - The negative external impacts exacerbate the resource-efficient aspects in UWS, while low operating efficiency aggravates the resource quantity in UWS
 - Resource use of the city over time can be traced in the water and energy use profile, therefore it can be used to formulate strategies and action plans for water and energy management in UWS
 - The research of city status, external impacts, and operational efficiency change allow decision-makers to predict how systems will be changed and establish efficient strategies

차

제	출	문	i
요	약	문	ii
목		ネ	X
표	목	ネ	xii
ユ	림목	누차	xv

7	에 1 장 서 론	1
	1.1 연구 배경	1
	1.2 연구 목적	3
	1.3 연구내용 및 범위	4
7	제 2 장 본 론	6
	2.1 도시 물관리	6
	2.1.1 도시 물순환 시스템	6
	2.1.2 도시 물순환 시스템의 넥서스 접근	8
	2.2 도시 물순환 시스템 내 물을 위한 에너지	11
	2.3 도시 물순환 시스템 내 물을 위한 탄소	15
	2.4 도시 물순환 시스템 에너지 인텐시티 영향 요인	19
	2.4.1 영향 요인 종류 및 분류	19
	2.4.2 기후	21
	2.4.3 지리적 특징	23
	2.4.4 도시 물순환 시스템 특징	25
	2.4.5 운영관리	28
	2.5 국가 및 공정별 도시 물순환 시스템 에너지 인텐시티 사례	29
	2.5.1 에너지 인텐시티 매트릭스	29
	2.5.2 국가 및 도시별 에너지 인텐시티	51
	2.5.3 취수 공정	73
	2.5.4 도수 공정	77

2.5.5	정수처리 공정	81
2.5.6	배·급수 공정	93
2.5.7	용수 사용 공정	95
2.5.8	하수 집수 공정	104
2.5.10	재이용 공정	122
2.5.11	방류	124
2.6 도	시 물순환 시스템 개선 및 관리	125
2.6.1	물·에너지 절약 방안	125
2.6.2	유지관리 효율 개선	126
2.6.3	신기술 도입	129
2.6.4	물 재이용 및 에너지 회수	131
2.7 모	델 구축 및 분석	132
2.7.1	모델 구축	132
2.7.2	전체 공정 경험 모델	138
2.7.3	세부 공정 경험 모델	139
2.7.4	이론적 모델	143
2.8 분	석 결과	145
2.8.1	도시 물순환 시스템 변수 변동에 따른 물-에너지 사용량 및 효율 분석	145
2.8.2	도시 분류 가이드라인	163
2.8.3	외부영향 및 운영효율 변동에 따른 시나리오 분석	165
제 3 장	결 론	178
참 고 문	헌	181

	1		10
#±	1.	스페인의 2008년 둘 관련 에너지 사용	12
土	Ζ.	2014년 중국 도시멸 물 생산용 선거 소비랑(단위:맥만m)	13
<u></u> 土	3.	선력 소비로 인한 국가멀 CO2 배술량 (kWn당 gCO2 배술량)	15
<u>н</u>	4. r	언도멀 선력 소비로 인한 국가멀 CO2 배술량 (KWh당 gCO2 배술량)	16
<u></u>	5.	도시 물순완 시스템에서 에너지 인텐시티에 미지는 영양	19
<u></u>	6.	도시 물순환 시스템에서 에너지가 사용되는 수요 동안	20
亜	7.	도시 물순환 시스템 공정별 에너지 인텐시티 기술통계	32
Ŧ	8.	도시 물순환 시스템 선제 에너지 인텐시티 분포의 매개변수 및 검정값	36
丑	9.	상수 시스템 에너지 인텐시티 분포의 매개변수 및 검정값	37
丑	10.	하수 시스템 에너지 인텐시티 분포의 매개변수 및 검정값	38
丑	11.	문헌에서 제시된 도시 물순환 시스템 공정별 에너지 인텐시티	39
丑	12.	도시 물순환 시스템 공정별 에너지 인텐시티 범위	51
丑	13.	미국에서 상수 공급 과정에서 에너지 인텐시티	52
丑	14.	미국에서 상수 공급 과정에서 Community와 Non Community에 따른 에너지 인텐시티·	52
丑	15.	도시별 도시 물순환 시스템 공정별 에너지 인텐시티	52
丑	16.	도시 물순환 시스템 공정별 에너지 인텐시티 [kWh/m3] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	53
丑	17.	시스템 및 공정별 에너지 인텐시티 관측값	54
丑	18.	도시 물순환 시스템의 공정 및 정수처리와 하수 처리의 세부 공정에 따른 에너지 인텐시티의 범위 [kWh/m³]	55
丑	19.	도시 급수 인프라의 에너지 인텐시티와 온실가스(GHG) 잠재량	57
丑	20.	적용 기술 및 수원에 따른 에너지 인텐시티	59
표	21.	2017년 도시 물순환 시스템 공정별 에너지 인텐시티 벤치마크 지역	59
표	22.	지역별(2012년, 2017년) 도시 물 순환환 공정별 에너지 인텐시티 [kWh/m3]	60
丑	23.	급수 사이클의 에너지 인텐시티	62
丑	24.	도시 상수 시스템에서 공정별 에너지 인텐시티	65
丑	25.	2014년 수자원 존별(Water Resource Zone) 급수시스템 관련 요약통계	67
Ŧ	26.	지역별 도시 물순환 시스템 단계별 에너지 소비량	70
Ŧ	27.	유럽 국가의 공공 급수별 연간 평균 담수 취수(2002-2009) (m³/inh*년)	73
Ŧ	28.	캘리포니아의 다양한 공급원에 대해 관측된 에너지 인텐시티(kWh/m³)	74
<u></u> #	29.	직접적인 에너지 영향	76
<u></u> #	30.	상수 시스템의 에너지 소비량	77
<u></u> #	31.	지하수 펌핑에 필요한 에너지	77
<u></u> #	32.	시스템 매개변수에 대한 가중평균	78
丑	33.	상수시스템의 에너지 인텐시티 추정치(kWh/m³)	78
亜	34.	원수 및 펌프 효율에 따른 에너지 인텐시티(kWh/m³)	78
표	35.	정수처리 세부 공정별 에너지 인텐시티 기술통계	84
표	36.	정수처리 세부 공정별 에너지 인텐시티	85
표	37.	정수처리 세부 공정별 에너지 인텐시티 추정치(kWh/m ³)	88
丑	38.	정수처리 공정별 에너지 인텐시티	89

丑	39.	정수장 세부 공정별 필요 에너지 인텐시티 (kWh/m ³)	89
Ħ.	40.	정수장 세부 공정별 필요 에너지량 및 에너지 인텐시티	89
ΞĒ.	41.	다양한 담수화 기술의 에너지 소비 #1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·· 92
₽.	42.	다양한 담수화 기술의 에너지 소비 #1 (kWh/m ³)	·· 92
丑	43.	가정용 기기별 물 사용 비율	96
丑	44.	동절기 물 최종사용량 매개변수의 평균값 요약	·· 97
₽.	45.	세부 용수 사용 목적별 에너지 인텐시티 기술 통계	98
丑	46.	세부 용수 사용 목적별 에너지 인텐시티	98
<u></u> #	47.	동절기 물 최종사용량 매개변수의 평균값 요약 (설문조사 자료)	102
<u></u> #	48.	동절기 물 관련 에너지 최종사용 매개변수의 평균값 요약 (설문조사 기반)	103
<u></u> #	49.	폐수시스템 매개변수에 대한 가중평균값	109
<u></u> #	50.	에너지 인텐시티 및 유기부하제거에 따른 공정별 에너지성능 평가	110
<u></u> #	51.	하수처리 세부 공정별 에너지 인텐시티 기술통계	112
丑	52.	하수처리 세부 공정별 에너지 인텐시티	113
丑	53.	하수처리 공정에 따른 에너지 사용량	117
<u></u> #	54.	하수처리 시 에너지 소비량	117
丑	55.	2차 하수처리의 에너지 인텐시티 (kWh/m ³)	118
<u></u> #	56.	각종 하수처리시설의 평균 에너지 인텐시티 추정치	119
<u></u> #	57.	하수처리장 규모별 단위 에너지 소비량	119
<u></u> #	58.	하수처리장 단위공정별 에너지 인텐시티 추정치 (kWh/m³)	120
<u></u> #	59.	단위 로그 제거 당 에너지 인텐시티 식	121
<u></u> #	60.	전세계 물 재이용 현황	122
₽.	61.	도시 물순환 시스템에서 에너지 개선 방안	125
丑	62.	도시 물순환 시스템 넥서스 모델 구축 방향	132
₽.	63.	도시 물순환 시스템 공정별 전체 경험 모델, 분류된 경험 모델 및 이론적 모델	133
₽.	64.	모델 구성 변수, 관계식 및 단위	134
丑	65.	도시 물순환 시스템 공정별 에너지 인텐시티 분포	138
표	66.	도시 물순환 시스템의 취약, 보통, 강건한 단계에 따른 매개변수 값	138
표	67.	담수화 공정에 따른 열 에너지 인텐시티 및 전기 에너지 인텐시티	139
표	68.	담수화 공정별 강건, 보통 및 취약한 도시에 적용된 에너지 인텐시티	139
표	69.	이론적 또는 사례별 지하수 취수 단위 깊이 에너지 인텐시티	140
Ŧ	70.	지하수 취수 시 강건, 보통 및 취약한 도시에 적용된 단위 깊이 에너지 인텐시티 및 취수 심도	140
₽.	71.	지역별 도수관로 길이에 따른 단위 용수 에너지 인틴세티	140
표	72.	도수 시 강건, 보통 및 취약한 도시에 적용된 단위 길이 에너지 인텐시티 및 도수관로 길이	141
표	73.	정수처리 세부 공정별 에너지 인틴시티 기술 통계	141
Ŧ	74.	정수처리 시 강건, 보통 및 취약한 도시에 에너지 인텐시티	141
표	75.	배·급수 시 강건, 보통 및 취약한 도시에 에너지 인텐시티	142
丑	76.	하수처리 세부 공정별 에너지 인틴시티 기술 통계	142
<u>#</u>	77.	하수처리 시 강건, 보통 및 취약한 도시에 에너지 인텐시티	142
<u>#</u>	78.	도시 물순환 시스템 분석시 각 공정별로 적용된 모델	143
<u>#</u>	79.	도시 물순환 시스템 변동 변수, 설정값 및 분류	145
Ħ.	80.	도시 물순환 시스템 변수 변동에 따른 인텐시티 별 궤적	146

丑	81.	도시 물순환 시스템 변수 변동 시나리오별 물-에너지 사용량 및 효율	150
丑	82.	도시 인구 변동에 따른 물 에너지 사용량 및 효율	153
丑	83.	도시 지하수 취수율 변동에 따른 물 에너지 사용량 및 효율	155
Ŧ	84.	도시 에너지 인텐시티 여건 변동에 따른 물 에너지 사용량 및 효율	158
<u>#</u>	85.	도시 물손실 변동에 따른 물 에너지 사용량 및 효율	160
丑	86.	도시의 총 사용수량 , 유수수량, 실 사용수량 에너지 인텐시티에 따른 분류 범위 값	163
<u>#</u>	87.	시나리오 분석을 위한 해당 도시 여건	165
丑	88.	외부 영향 시나리오 시 매개변수 설정 값	166
丑	89.	운영 효율 변동 시나리오 시 매개변수 설정 값	166
<u></u> #	90.	시나리오에 따른 총 용수사용량, 유수수량, 실 사용량 및 에너지 사용량	172

그 림 목 차

그림 1. 도시 물순환 시스템에서 주요 입출력 자원	6
그림 2. 도시 물순환 시스템의 주요단계 #1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7
그림 3. 도시 물순환 시스템의 주요단계 #2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7
그림 4. 간략화된 도시 내 에너지-물-탄소 넥서스 시스템	8
그림 5. 도시 물순환 시스템 내 에너지 사용	8
그림 6. 도시 물순환 시스템 분석을 위한 프레임워크	9
그림 7. 도시 물순환 시스템에서 물질 이동	9
그림 8. 2001년 캘리포니아의 수도 부문 전기 사용량 [GWh]	14
그림 9. 도시 물순환 시스템 공정 중 에너지 사용	20
그림 10. 30개 도시에서 연평균 강수량과 에너지 인텐시티의 관계	21
그림 11. 기후 유형에 따른 전력 소비량 분포	22
그림 12. 다양한 상수관망 시스템에서 에너지와 표고차의 관계	23
그림 13. 2015년 중국의 도시 평지비와 에너지 인텐시티의 관계	24
그림 14. 위치에 따른 전력 소비량 분포	25
그림 15. 2015년 중국 도시별 총 급수량 및 에너지 인텐시티의 관계	26
그림 16. 거주자 수 대비 단위 관로 길이 당 에너지 인텐시티 분포도	26
그림 17. 인구밀도 대비 단위 관로 길이 당 에너지 인텐시티 분포도	27
그림 18. 2015년 중국 도시별 평균 상수관망 수압 및 에너지 인텐시티의 관계	28
그림 19. 도시 물순환 시스템 공정별 에너지 인텐시티 분포	31
그림 20. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 에너지 인텐시티 히스토그램	33
그림 21. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 에너지 인텐시티 밀도함수	34
그림 22. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 에너지 인텐시티 누적 밀도함수…	34
그림 23. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 정규화된 에너지 인텐시티 Q-Q p	olot 35
그림 24. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 에너지 인텐시티 Q-Q plot	35
그림 25. 도시 물순환 시스템 전체 에너지 인텐시티 분포 비교	36
그림 26. 상수 시스템 에너지 인텐시티 분포 비교	37
그림 27. 하수 시스템 에너지 인텐시티 분포 비교	38
그림 28. 도시 물순환 시스템 공정별 에너지 강도 범위	58
그림 29. 2012~2017년 지역별 물 분야 에너지 인텐시티 변화	60
그림 30. 2017년 도시 물순환 시스템 단계별 17개 지역의 에너지 강도	61
그림 31. 30개 도시의 물-에너지 현황, 물 공급 및 총 물 사용량 1인당 에너지 사용량	63
그림 32. Water-Energy Profile for a Sub-sample of 17 Cities, showing their Trajector	ries64
그림 33. Thames Water의 용수 공급 수자원 구역	67
그림 34. 2009년과 2014년 사이에 Hames Water Utilities에서 관찰된 전력 소비량(GWH)	68
그림 35. 각 기능별 상대적인 변화율	68
그림 36. Thames water Utilities의 전력사용량 분해 (a) 관측 시계열 f; (b) 추세 α ; (c) 계절 위상 β ; (d) 무작위 성	분γ69
그림 37. 2005년 미국 공공급수 취수량	74
그림 38. 취수 깊이와 토출압에 따른 에너지 인텐시티	75

그림	39.	캘리포니아 전역의 지하수 펌핑 에너지 값	·· 76
그림	40.	지표수 및 지하수 내 주요 유해 물질	• 81
그림	41.	지표수 및 지하수 대표적인 처리과정	• 81
그림	42.	대표적인 지표수 정수처리 흐름도	• 82
그림	43.	정수처리장 슬러지 처리 흐름도	·· 82
그림	44.	정수처리 세부 공정별 에너지 인텐시티	. 88
그림	45.	전기투석 원리 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·· 91
그림	46.	단순 MSF 증류 프로세스 체계	·· 91
그림	47.	다중 효과 증류 프로세스 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·· 91
그림	48.	증기 압축 프로세스	·· 92
그림	49.	국가별 도시 급수를 위한 단위당 에너지 소비량	. 93
그림	50.	2011년 군집별 중소도시 표본조사 요약통계	. 94
그림	51.	모델 검증 결과	·· 94
그림	52.	가정에서 물-에너지-식량간의 상호 작용	96
그림	53.	에너지 최종 사용 부문 및 관련 기기	96
그림	54.	마스다르시의 실내용수 수요시나리오 모델	99
그림	55.	아부다비 월평균 기온(UAE 기후 2012 데이터 기준)	99
그림	56.	마스다르시 건축물의 용수사용 월별 에너지 소요량	99
그림	57.	온수사용량 변화에 따른 온수난방 에너지 월별 변화	100
그림	58.	폐수의 주요 오염물질 및 이를 제거하기 위해 사용되는 처리 시스템	104
그림	59.	대체 기술 및 병원체 제거 효율성	105
그림	60.	일반 하수 및 슬러지 처리의 흐름도	106
그림	61.	하수처리 공정 선정 흐름도	106
그림	62.	대표 하수처리 공정 흐름도	107
그림	63.	바이오솔리드 처리 공정	107
그림	64.	고체 및 바이오 고체 처리에 사용되는 잠재적 작업 및 프로세스	108
그림	65.	고체 처리 및 폐기 방법	108
그림	66.	하수처리시설 EI 및 유기물 제거	110
그림	67.	대표적인 하수처리 공정별 에너지 인텐시티 비교	118
그림	68.	처리기술별 단위 로그 제거 시 에너지 인텐시티	121
그림	69.	에너지 효율, 재생 에너지, 물 효율 향상이 적용 가능한 도시 물순환 시스템 각 단계별 에너지 강도	126
그림	70.	에너지 개선 프로세스를 적용한 경우와 적용하시 않은 경우 이익	127
그림	71.	상하수도시설의 에너지효율 개선방을 위한 설계, 적요 및 적용	128
그림	72.	폭기 시스템	130
그림	73.	가스화 프로세스 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	131
그림	74.	도시 물순환 시스템 및 주요 공정	132
그림	75.	넥서스 모델의 주요 인과 관계	133
그림	76.	모델 결과 분석을 위한 방법론 예시	144
그림	77.	보통 도시 여건에서 변수 변동에 따른 총 사용수량과 에너지 사용량 관계	147
그림	78.	보통 도시 여건에서 변수 변동에 따른 유수수량과 에너지 사용량 관계	147
그림	79.	보통 도시 여건에서 변수 변동에 따른 실 사용수량과 에너지 사용량 관계	148
그림	80.	도시 에너지 인텐시티 여건에 따른 총 사용수량과 에너지 사용량 관계	148

그림 81. 도시 에너지 인텐시티 여건에 따른 유수수량과 에너지 사용량 관계	149
그림 82. 도시 에너지 인텐시티 여건에 따른 실 사용수량과 에너지 사용량 관계	149
그림 83. 도시 인구변동에 따른 총 사용수량과 에너지 사용량 관계	153
그림 84. 도시 인구변동에 따른 유수수량과 에너지 사용량 관계	154
그림 85. 도시 인구변동에 따른 실 사용수량과 에너지 사용량 관계	154
그림 86. 도시 지하수 취수율 변동에 따른 총 사용수량과 에너지 사용량 관계	156
그림 87. 도시 지하수 취수율 변동에 따른 유수수량과 에너지 사용량 관계	156
그림 88. 도시 지하수 취수율 변동에 따른 실 사용수량과 에너지 사용량 관계	157
그림 89. 에너지 인텐시티 여건 변동에 따른 총 사용수량과 에너지 사용량 관계	158
그림 90. 에너지 인텐시티 여건 변동에 따른 유수수량과 에너지 사용량 관계	159
그림 91. 에너지 인텐시티 여건 변동에 따른 실 사용수량과 에너지 사용량 관계	159
그림 92. 물손실 변동에 따른 총 사용수량과 에너지 사용량 관계	161
그림 93. 물손실 변동에 따른 유수수량과 에너지 사용량 관계	161
그림 94. 물손실 변동에 따른 실 사용수량과 에너지 사용량 관계	162
그림 95. 총 사용수량 에너지 인텐시티 기준 도시 분류	163
그림 96. 유수수량 에너지 인텐시티 기준 도시 분류	164
그림 97. 실 사용수량 에너지 인텐시티 기준 도시 분류	164
그림 98. 인구 25만의 보통의 도시에서 외부영향 및 운영효율 변화 시나리오에 따른 총 사용수랑과 에너지 3	관계 168
그림 99. 인구 25만의 보통의 도시에서 외부영향 및 운영효율 변화 시나리오에 따른 실 사용수량과 에너지 =	관계 168
그림 100. 취약한 도시에서 시나리오에 따른 총 사용수량과 에너지 관계	169
그림 101. 보통의 도시에서 시나리오에 따른 총 사용수량과 에너지 관계	169
그림 102. 강건한 도시에서 시나리오에 따른 총 사용수량과 에너지 관계	170
그림 103. 취약한 도시에서 시나리오에 따른 실 사용수량과 에너지 관계	170
그림 104. 보통의 도시에서 시나리오에 따른 실 사용수량과 에너지 관계	171
그림 105. 강건한 도시에서 시나리오에 따른 실 사용수량과 에너지 관계	171

제 1 장 서론

1.1 연구 배경

도시화는 산업화의 부수적 요소일 뿐만 아니라 경제 성장, 인구 증가 및 여러 가지 사회 변화에서 지속적으로 수반되는 현상이다. 그리고 이러한 도시화 과정은 필연적으로 다양 한 문제들, 특히 물에 대한 접근성, 수질, 위생 등을 포함하는 물과 관련된 문제를 야기 시킨다.

도시 물순환 시스템은 사람이 자연적인 물의 순환을 변화하여 물을 마시고 사용하기 위 한 상수 시스템과 하수와 빗물을 처리하기 위한 우수 및 하수 시스템으로 구성된다. 이 러한 도시 물순환 시스템은 시스템을 구성하는 다양한 요소들로 인한 세부 복잡성과, 시 간 및 공간에 따라 변화가 발생되는 동적 복잡성을 포함하고 있다. 따라서 현재 도시 물 순환 시스템의 관리는 몇 가지의 개별적인 문제를 관리하는 기존의 단순한 관리방식에서 전체적인 시스템의 관점에서의 관리로 빠르게 변화되고 있다.

도시 물순환 시스템을 효율적으로 관리하기 위해 물 부문만을 고려하는 것이 아닌 에너 지와 탄소 등의 물과 연관된 다양한 부문들을 함께 고려하는 넥서스 관점이 학계와 관련 의사 결정권자들에게 점차 각광받고 있다. 넥서스 간 부문들은 긴밀한 연계성을 지니고 있으며, 이 요소들은 복잡한 상호작용을 가지고 있다. 이러한 상호 연결 중에서 물과 에 너지는 매우 밀접한 관계를 가지고 있다. 이에 따라 에너지와 물은 전통적으로 독립적인 자원으로 여겨져 왔지만, 이 두 기본 자원 사이의 상호의존성은 현재 세계적으로 중요하 게 인식되고 있다.

도시 물순환 시스템 내에서 물, 에너지, 탄소 간의 관계를 넥서스 관점에서 이해하는 것 은 해당 시스템의 지속가능성에 중요한 요소로 간주된다. 즉, 시스템 내에서 물과 에너지 의 연관성을 이해하면, 물과 에너지 소비를 최소화하고 탄소와 같은 환경 오염물질의 배 출을 줄이는 데 도움이 될 수 있다. 이에 따라 최근 몇 년 동안 부족한 수자원과 기후변 화와 같은 물 관련 문제들을 개선하기 위해 도시 물순환 시스템에 물과 에너지의 연계성 을 고려하기 시작하였다. 더 나아가 몇몇 연구자들은 도시 물순환 시스템 내의 물 소비, 에너지 사용 및 탄소 배출 감소를 위하여 자치 단체, 도시 개발자들, 정책 입안자들이 과 학적 사실에 입각한 결정을 내리는데 도울 수 있는 넥서스 접근법을 제시하였다.

기존의 연구에서 제시된 해당 지역의 개별 넥서스 모델들은 다양한 데이터와 정보를 요 구하며, 모델별로 각기 다른 장점과 한계를 가지고 있다. 이러한 모델들은 특정 조건에서 만 유효하며 특정 제약 조건에서만 의미 있는 결과를 도출할 수 있다. 따라서 모든 고유 한 넥서스 사례에 대응하기는 어렵지만 다양한 이해관계자의 행동을 평가하고 조정하며 의사결정을 용이하게 하기 위한 포괄적이고, 다용도 적이며, 실용적이며, 널리 수용된 넥 서스 프레임워크와 방법론을 개발해야 한다.

또한 기존의 연구들이 중점을 둔 의사 결정권자들에게 통찰력을 제공하는 것에서 더 나 아가, 실질적인 의사결정을 지원하기 위한 연구 연구가 수행되어야 할 필요가 있다. 즉 단순히 넥서스 관점을 이해하는 것이 아니라 의사결정을 지원하기 위한 도구에 대한 연 구가 중심이 되어야 한다. 또한 넥서스 연구가 지속적인 관심을 받기 위해서는 구현 단 계에서 실질적인 성과를 입증해야 할 필요가 있다.

1.2 연구 목적

본 2차년도 연구에서는 기존 문헌에서 제시된 도시 물순환 시스템의 공정별 에너지 인텐 시티를 조사하여 에너지 인텐시티 매트릭스를 구성하였으며, 시스템 다이나믹스를 적용 하여 물-에너지-환경 넥서스 모델을 개발하고, 여러 요인 및 시나리오에 따른 도시 물순 환 시스템 내에서 자원의 양적·질적 사용을 분석하였으며, 현재 도시의 상태를 벤치마킹 할 수 있는 가이드라인을 제시하였다. 이를 통하여 넥서스 관점에서 도시 물순환 시스템 의 효율적인 관리 전략 및 실행 계획을 도출하는 것을 연구 목적으로 한다. 이를 위해 다음과 같은 세부 연구 목표를 수립하였다.

- 이너지 인텐시티 매트릭스 구축) 기존 도시 물순환 시스템의 문헌을 조사를 통하여 도시 물순환 시스템 공정별 에너지 인텐시티 매트릭스 구축 및 기술통계 값 도출
 전 세계 대륙, 국가 및 도시별 에너지 인텐시티 현황 및 세부 공정에 따른 사용 에 너지 조사
- (변동 요인 분석) 도시 물순환 시스템 내 변수들의 변동에 따른 물 사용량(총 사용수 량, 유수수량, 실 사용수량)과 에너지 사용량(총 에너지 사용량), 그리고 그에 따른 다 양한 에너지 인텐시티(총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인텐시티)의 변화 분석
 - 변수의 변동에 따른 물과 에너지 자원 사용의 양적인 측면과 질적인 측면의 변화를
 파악
 - 넥서스 관점에서 도시 물순환 시스템 관리를 위한 일차적인 방향을 제시
- (도시 분류 가이드라인 제시) 기존 문헌들에서 제시된 도시 물순환 시스템의 각 단계 별 에너지 인텐시티 값을 기준으로 하여 총 사용수량 에너지 인텐시티, 유수수량 에 너지 인텐시티 및 실 사용수량 에너지 인텐시티 관점에서 도시를 분류할 수 있는 가 이드라인 제시
 - 제시된 도시 분류는 해당 도시의 현재 도시 물순환 시스템의 물-에너지 넥서스 관
 점에서 자원의 효율적인 이용 수준을 파악하는데 유용
 - 또한 시간에 따른 도시의 효율 변동의 궤적을 추적할 수 있어 도시 물순환 시스템
 의 전략 및 실행계획을 수립하는데 활용
- 이 (외부영향 및 운영효율 변동 시나리오 분석) 해당 도시의 여건에 따라서 도시 물순환
 시스템의 외부 영향 및 운영효율 변동 시나리오에 따른 물-에너지 자원의 사용량 및
 효율의 변동을 10년 기간 동안 분석
 - 도시 여건, 외부영향 및 운영효율 변동 시나리오 분석 결과를 통해 도시 물순환 시
 스템 관련 의사 결정권자는 본인들의 시스템이 어떻게 변동이 될 지를 예측할 수
 있으며, 이에 따라 효율적인 전략 및 프로그램을 수립

1.3 연구내용 및 범위

1.2 절에서 제시된 연구 목적에 따른 세부 연구 내용 및 범위는 아래와 같다.

- 에너지 인텐시티 매트릭스 구축
 - (전체 시스템) 도시물순환 전체 시스템, 상수시스템 및 하수시스템의 에너지 인텐시 티 조사 및 분석
 - (공정별) 지하수 취수, 지표수 도수, 취수와 도수, 전체 정수처리 공정, 지표수 정수 처리, 지하수 정수 처리, 담수화, 배·급수, 용수 사용, 하수 집수, 하수 처리, 용수 재 이용 및 방류 단계별 에너지 인텐시티 조사 및 분석
 - (세부 단위 공정별) 정수 처리 및 하수처리 세부 단위 공정별 에너지 인텐시티 조사 및 분석
 - (이론) 관로 이송 시 이론적인 에너지 인텐시티 조사
- 변동 요인 분석
 - (고려변수) 도시 물순환 시스템을 구성하는 변수들(인구, 취수원 비율, 도시 에너지 인텐시티 여건, 누수율)의 값의 변동에 따른 물 사용량, 에너지 사용량 및 각각의 에너지 인텐시티 분석
 - (인구) 도시 에너지 인텐시티가 보통, 원수의 지하수 비율이 50%, 물손실이 0.3이인 경우에 인구의 변동에 따른 총 에너지 사용량, 총 물 사용량, 총 유수수량, 실 용수 사용량과 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인텐시 티의 변동 분석
 - (취수원 비율) 도시 에너지 인텐시티가 보통, 물손실이 0.3이인 경우에 인구별로 지 하수 취수 비율이 0.1, 0.5, 0.9로 변동할 때 총 에너지 사용량, 총 사용수량, 총 유 수수량, 실 사용수량과 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인텐시티의 변동 분석
 - (도시 에너지 인텐시티 여건) 하수 취수 비율이 0.5, 물손실이 0.3인 경우에 인구별
 로 도시 물순환 시스템의 에너지 인텐시티가 취약, 보통, 강인의 상태일 때 총 에너
 지 사용량, 총 사용수량, 총 유수수량, 실 사용수량과 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인텐시티의 변동 분석
 - (유수율) 도시 에너지 인텐시티가 보통, 지하수 취수 비율이 0.5이인 경우에 인구별
 로 물손실이 0.1, 0.3, 0.5로 변동할 때 총 에너지 사용량, 총 사용수량, 총 유수수량,
 총 사용수량과 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인
 텐시티의 변동 분석
- 도시 분류 가이드라인 제시
 - 문헌 조사에 따라서 도시 물순환 시스템의 각각의 공정별 에너지 인텐시티의 일 사 분위수, 중위값, 삼 사분위수 값으로 구성된 모델을 일정 인구(5만, 25만, 50만), 지

하수 취수비율(50%) 및 물손실(0.3)의 경우에 분석

- 분석된 결과에 따른 총 사용수량, 유수수량 및 실 사용수량 에너지 인텐시티 관점 의 도시를 뛰어남(Excellent), 좋음(Good), 좋지 않음(Poor), 나쁨(Bad)의 4가지 단계 로 구분
- 도시 여건에 따른 외부영향 및 운영효율 변동 시나리오 분석
 - (도시 여건) 해당 도시의 여건은 인구(5만, 25만, 50만)와 해당 도시 에너지 인텐시 티의 여건(취약, 보통, 강건)에 따라 9개로 분류
 - (외부여건 & 운영효율) 외부사항 변동 2개(변동 없음, 변동 있음)와 운영효율 관리
 3개(개선, 유지, 악화)를 고려하여 총 54개의 시나리오 분석

제 2 장 본론

2.1 도시 물관리

2.1.1 도시 물순환 시스템

도시화는 지속적인 과정으로, 산업화의 부수적 요소일 뿐만 아니라 경제 성장과 사회 변 화에서 수반되는 현상이다. 문제없이 도시들을 지속가능하게 성장시키는 것은 도시 계획 자들과 관리자에게 매우 어려운 과제이며, 많은 경우에 이러한 도시화는 무질서한 확장 을 초래한다. 따라서 도시화 과정에서는 필연적으로 다양한 문제, 특히 물과 관련된 문제 를 야기한다.

도시 시스템의 다양한 하위 시스템은 물리적, 사회적, 경제적, 생태적, 환경적 기반 시설 과 제도 등이다. 이 모든 하위 시스템은 상호 연결되어 있고 상호 의존적이며 전체적으 로 동적으로 작동한다. 도시의 기술적, 사회 경제적 과정인 도시 대사(Urban Metabolism) 에 초점을 맞춘 연구에서는 [그림 1]에서와 같은 도시 내 물의 순환을 도시 내의 주요 흐 름 중 하나로 간주하고 있다.

Note: DWS: Drinking Water System, WWS: Wastewater System, SWS: Storm Water System

그림 1. 도시 물순환 시스템에서 주요 입출력 자원

출처: Shrestha(2017)

인간이 통제하는 물순환 과정은 도시 물순환 시스템(urban water system 또는 urban water cycle)을 구성한다(Bagley 등, 2005; Chhipi-Shrestha 등, 2015). 도시 물순환 시스템 은 [그림 2]와 [그림 3]에서와 같이 취수, 도·송수, 정수처리, 배·급수, 용수사용, 하수집수, 하수처리, 재이용, 방류 등의 과정을 포함한다. 이러한 도시 물순환 시스템은 크게 상수 시스템(drinking water system), 하수 시스템(wastewater system), 우수 시스템(storm water system)으로 크게 구분할 수 있다.

그림 2. 도시 물순환 시스템의 주요단계 #1

출처: GAO(2011)

그림 3. 도시 물순환 시스템의 주요단계 #2

출처: Gomes 등(2015)

도시 물순환 시스템은 구성 요소가 많은 세부 복잡성과 시간 및 공간에 따라 변화가 발 생하는 동적 복잡성을 포함하고 있다. 이와 같이 도시 물순환 시스템에서 나타나는 역동 적인 복잡성은 도시 물관리에 큰 어려움을 주고 있다. 따라서 현재 도시 물 관리는 몇 가지의 개별적인 문제의 관리보다 복잡한 시스템의 관리 중심으로 빠르게 진화되고 있 다.

2.1.2 도시 물순환 시스템의 넥서스 접근

도시는 인간 활동의 중심지로서 지방자치단체가 정책을 집행할 수 있는 기본 단위다. 그 러나 도시가 물·에너지 공급을 어떻게 확보·유통·관리하는지가 도시 성장에 직접 영 향을 미친다는 사실에도 불구하고 도시 물순환 시스템에 관해 연구가 많지 않은 상황이 다. 이는 도시 수준에서 물과 에너지 필요한 데이터의 부족에 많이 기인한다.

물, 에너지, 탄소 흐름 분석은 도시의 지리적 경계를 범위로 하는 것이 효율적이다. [그림 4]에서 [그림 5]에 나타난 바와 같이 물, 에너지, 탄소 관점의 자원의 총 투입, 분배, 소 비, 산출은 도시 물 순환 시스템의 단계별로 분석하는 것이 일반적이다.

Carbon emission ---- Energy flows ------ Water flows

그림 4. 간략화된 도시 내 에너지-물-탄소 넥서스 시스템

출처: Duan & Chen (2016)

그림 5. 도시 물순환 시스템 내 에너지 사용

출처: Wakeel 등(2016)

그림 6. 도시 물순환 시스템 분석을 위한 프레임워크

출처: Wakeel 등(2016)

그림 7. 도시 물순환 시스템에서 물질 이동

출처: Pena-Guzman 등(2017)

넥서스는 물, 에너지, 식량, 토지, 기후 및 환경 등의 부문 간 연관성과 상호의존성을 나 타내며, 이러한 넥서스 개념은 최근에 학계와 정책결정자들에게 많은 관심을 받고 있다. 더 나아가 넥서스 관점의 도입으로 단일 부문별로 자원을 관리하는 기존의 정책 결정 체 계의 한계를 극복하고, 관련 있는 부문 간의 시너지와 트레이드오프를 고려한 지속가능 한 발전을 위한 의사 결정이 가능하게 되었다.

넥서스 간 부문들은 긴밀한 연계성을 지니고 있으며, 이 요소들은 복잡한 상호작용을 가 지고 있다. 이러한 상호 연결을 중에서 물과 에너지는 매우 밀접한 관계를 가지고 있다. 에너지와 물은 전통적으로 독립적인 자원으로 여겨져 왔지만, 이 두 기본 자원 사이의 상호의존성은 현재 세계적으로 받아들여지고 있다. 즉, 에너지와 물은 인간사회의 기능을 유지하는 근본적인 자원이며, 서로 긴밀하게 얽혀있고, 물과 에너지는 불가분의 관계이 다.

에너지는 도시 물순환 시스템의 모든 공정 및 세부 단위 공정에서 사용된다. 기수나 바 닷물의 담수화, 지하수 대수층에서 펌핑, 물이 풍부한 지역에서 물이 부족한 지역으로의 원수 또는 정수의 이송, 정수, 폐수 처리와 같은 물과 관련된 과정에서 에너지는 필수적 인 역할을 한다. 또한 물은 에너지 생산에 필수적인 역할을 한다. 물은 원자재 추출 및 가공, 전기 생산, 화력발전소 냉각, 폐기물 처리 및 에너지 발전 설비 유지보수와 같은 일련의 에너지 생산 공정에서 필요하다. 석탄 처리 중 물은 탐사와 발전소 운영에 소비 된다. 원유의 경우, 물은 석유 탐사, 추출, 회수, 정제, 그리고 다른 공장 운영 중에 사용 된다. 천연가스 또한 탐사 및 시추 과정과 처리를 위해 물을 필요로 한다.

물, 에너지, 탄소 간의 관계를 넥서스 관점에서 이해하는 것은 도시 물순환 시스템의 지 속가능성에 중요한 요소로 간주될 수 있다. 즉, 에너지와 물의 연관성을 이해하면 에너지 와 물 소비를 최소화하고 환경 배출을 줄이는 데 도움이 될 수 있다. 이에 따라 최근 몇 년 동안 부족한 자원과 기후변화와 같은 물 관련 문제들을 개선하기 위해 도시 급수 시 스템에 물 에너지 연계성을 고려하기 시작하였다(Huang 등, 2018). 몇몇 연구자들은 도시 물순환 시스템 내의 물 소비, 에너지 사용 및 탄소 배출 감소를 위하여 자치 단체, 도시 개발자들, 정책 입안자들이 과학적 사실에 입각한 결정을 내리는데 도울 수 있는 넥서스 접근법을 제시하고 있다. 이와 같은 넥서스 분석이 의사결정에 도입되기 위해서는 포괄 적인 프레임워크 및 의사결정 지원 도구가 필요하다. 그러나 현재 도시 물순환 시스템 분석을 위한 통일 프레임워크와 일관된 방법론은 부족한 현실이다.

2.2 도시 물순환 시스템 내 물을 위한 에너지

도시 물순환 시스템과 관련된 에너지에 대한 사례 연구는 비용 효율성과 효율 측면에서 물 분야의 에너지 절감 정책을 수립하는데 필수적인 전제 조건으로 볼 수 있다. 이를 위 해 도시 물순환 시스템에서 물과 에너지의 상호의존성과 연관성을 포착하기 위한 연구가 수행 되었다. 이러한 연구는 기후, 지리적 특징, 운영 효율성, 그리고 물과 에너지 연관성 에 대한 다양한 수준과 요인의 영향을 분석하는 것을 포함한다.

그러나 물 시스템에 의한 에너지 요구량, 즉 물을 위한 에너지(energy for water)에 대한 연구는 부족한 편이며, 현재 많은 경우에 도시 물순환 시스템과 에너지는 독립적으로 관 리 되고 있다. 또한 대부분의 도시 규모에 대한 연구는 에너지 생산과 사용의 영향의 상 대적 우선순위와 중요성 때문에 에너지 시스템에 더 많은 중점을 두고 있다.

물과 관련된 목적으로 사용되는 에너지의 대부분은 전기의 형태이며, 도시 물순환 시스 템의 운영 단계는 생애주기 관점에서 가장 에너지 집약적인 단계이다(Friedrich, 2002; Nair 등, 2014). 지역마다 도시 물순환 시스템의 특성이 크게 다르고, 공급망 내 각 공정 에 필요한 전력량도 지역마다 크게 다를 수 있다. 물을 위한 에너지에 관한 여러 지역에 서의 연구는 특히 유사한 지리적 환경을 가진 도시 간 모범 사례들을 파악하고, 도시 간 물 에너지 관리 전략을 수립하는데 도움이 될 수 있다. 다지역 연구는 도시 물순환 시스 템과 에너지의 연관관계에 대한 지리 공간 조건의 영향에 대한 더 나은 이해를 제공하므 로(Mo 등, 2014) 개별 도시에 대한 연구를 체계적인 도시 간 비교로 확대할 필요가 있다. 그러나 현재 관련된 많은 데이터가 부족한 실정이며, 국가 전체의 평균 데이터를 이용한 분석은 지역 또는 도시별 물 관련 에너지 사용의 차이를 모호하게 할 수 있다.

전 세계적으로 2001년 기준 지구 에너지 총량의 약 7%가 도시 물순환 시스템에 이용된 것으로 보고되었다(James K. 등, 2002). 국가별로 살펴보면, 미국에서는 물 관련 에너지는 전국 전력 발전의 약 4%를 차지할 것으로 추산되었다(Electric Power Research Institute (EPRI), 2002). 담수 보호와 하수 재이용을 지지하는 국가 단체인 The River Network의 2009년 보고서에서는 에너지 정보 관리청(Energy Information Administration, EIA)의 데이 터를 조사하여, 여러 연료원(예: 전기, 천연 가스, 기름)을 활용하는 주거용 및 상업용 물 난방(water heating)에 대한 미국의 에너지 사용을 분석하였다(Griffiths-Sattenspiel & Wilson, 2009). 그 결과 3,800억 kWh 이상의 에너지가 물 난방에 사용되고 있으며, 이 중 40%에 가까운 1,480억 kWh가 전기로 공급되는 것을 알 수 있었다. Twomey & Webber(2011)는 공공용수 공급과 관련된 에너지 사용량이 전국 1차 에너지 소비량의 4.1%, 전국 전력 소비량의 6.1%로 보고하였다. 그러나 이 분석에서는 농업, 산업 및 자급 부문(예: 농업, 열전기, 광업)에서의 물과 관련된 에너지 요구량은 제외하였다. 이 분석에 서 펌프 사용, 운반, 처리, 분배 및 방류를 위한 수도 사업자와 하수 사업자의 전기 소비 량은 566억 kWh로 1차 에너지의 11.5%, 물 최종 사용을 위한 전기 소비량의 21.6%였다. 1년 뒤 진행된 Sanders & Webber(2012)에 의한 분석은 이전에 고려되었던 다른 분야들 에 산업과 화력발전 분야를 추가하면서 물 공급을 위한 에너지 수요를 더 폭넓게 검토하 였다. 이 분석은 2010년 국가 1차 에너지 소비의 12.6%가 직접 물 관련 에너지 소비라는 결론을 내렸다. 이에 해당하는 에너지양인 12.3조 BTU는 미국인 약 4천만 명의 연간 에 너지 소비량과 맞먹는다.

[표 1]에서 나타난 바와 같이 스페인의 2008년 총 전력 수요의 약 5.8%는 물 부문으로 분 석되었다(Hardy 등, 2012). 이 분석에서 용수 사용 부문(예: 가정용 온수, 공업 공정용 온 수 등)은 포함되지 않았다. 스페인에서 사용되는 물의 에너지 인텐시티는 0.45 kWh/m³으 로 추정되며, 관개 농업은 스페인에서 가장 큰 에너지 수요 증가를 보이는 물 분야 중 하나이다.

Stagog	Water Volume	Electricity			
Stages	(Mm ³)	Consumption (GWh)	Percentage (%)		
Extraction and water treatment	34,940	10,418	64		
Urban	4,343	5,457	33		
from desalination	694	2,275	14		
Agriculture	20,360	4,141	25		
Energy	8,683	521	3		
Industry	1,554	299	2		
Distribution/water use	25,587	3,374	21		
Residential	2,540	440	3		
Commercial	833	144	0.9		
Municipal and other	359	62	0.4		
Industrial	286	49	0.3		
Agricultural	20,360	2,469	15		
Non-registered water	1,210	210	1.3		
Waste water treatment	2,842	2,530	16		
Waste water collection	3,788	189	1.2		
Waste water treatment	2,842	1,454	9		
Recycled wafter (treatment and distribution)	1,510	887	5.4		
Total	34,940	16,323			
Total Spain electricity use		279,392			
Percentage		5.8%			

표 1. 스페인의 2008년 물 관련 에너지 사용

출처: Hardy 등(2012)

[표 2]와 같이 2014년 중국에서 총 249 TWh의 전기가 급수 및 처리에 사용되었으며, 이 는 국가의 연간 총 전기 소비량의 4.5%를 차지하였다(Chu, 2017). 이 비율은 전력 연구소 가 예측한 미국의 4%(EPRI, 2002년)보다 약간 더 큰 수치이며, 둘 다 UN의 국제적 추정 치인 8%(UN Water, 2014년)에 미치지 못하였다. 전체 도시 물순환 시스템 내에서 취수 및 도·송수의 전력소비 비중이 59.9%로 가장 높으며, 정수처리/배·급수(34.1%), 하수집수/처 리(6%) 등의 순이었다.

	EFWin			EFWsourcing	S		EFW	T&D	EFWwaste	
Province	10 ⁸ kWh	10 ⁸ kWh	%	Surface Water (%)	Ground water(%)	Other(%)	10 ⁸ kWh	%	10 ⁸ kWh	%
Beijing	28	17	58	10	47	43	9	31	3	11
Tianjin	15	9	59	40	25	35	4	29	2	13
Hebei	95	70	73	13	82	6	19	20	6	7
Shanxi	43	29	68	21	48	30	11	25	3	7
Inner Mongolia	69	55	79	31	66	3	12	17	2	3
Liaoning	75	50	67	30	46	24	19	25	5	7
Julin	54	35	66	47	51	2	16	30	3	5
Heilongjiang	126	105	83	36	64	0	19	15	3	2
Shanghai	61	20	33	100	0	0	36	59	5	8
Jiangsu	248	119	48	92	3	5	116	47	12	5
Zhejiang	87	38	44	94	2	3	40	46	9	10
Anhui	118	63	53	73	19	8	50	42	6	5
Fujian	89	41	46	92	6	1	43	48	5	6
Jiangxi	92	52	57	90	7	3	35	38	4	5
Shandong	131	95	73	24	36	40	25	19	11	8
Henan	118	75	64	22	63	14	34	29	9	7
Hubei	115	57	49	93	6	0	52	45	6	5
Hunan	125	67	53	89	11	0	52	41	6	5
Guangdong	192	88	46	91	7	2	85	44	19	10
Guangxi	104	61	59	91	8	1	38	37	5	4
Hainan	15	9	63	86	13	1	5	31	1	6
Chongqing	41	16	38	96	4	1	22	54	3	7
Sichuan	91	50	54	83	14	3	35	38	7	8
Guizhou	40	20	50	87	6	8	18	44	2	6
Yunnan	52	31	60	88	7	5	18	34	3	6
Tibet	8	7	84	77	23	0	1	14	0	1
Shaanxi	40	25	63	42	54	4	12	30	3	8
Gansu	41	31	76	56	36	8	8	21	1	3
Qinghai	8	6	71	74	24	2	2	24	0	6
Ningxia	18	15	81	84	15	1	3	15	1	4
Xinjiang	151	139	92	61	38	1	10	7	2	1
Total	2,490	1,493	60	63	30	7	849	34	148	6

표 2. 2014년 중국 도시별 물 생산용 전기 소비량(단위:백만㎡)

출처: Chu (2017)

도시 수준에서 살펴보면, Lofman 등(2002)은 캘리포니아와 미국 서부의 지역 및 주들 간의 물과 에너지의 관계를 조사하였다. 해당 연구 결과 캘리포니아에서 취수, 이송 및 처리하는 데 데 사용되는 에너지 사용량은 연간 15,000 GWh를 초과하였으며, 이는 캘리포니아 주에 서 사용되는 총 전력의 6.5%에 해당한다. 이 가운데 샌호아킨 밸리 남부에서 테하차피 산맥 으로 물을 이송하는 State Water Project는 캘리포니아에서 단일 전력사용량이 가장 많아 전체 소비 전력의 2~3%를 차지하고 있다. [그림 8]에서와 같이 California Energy Commission의 2005년, 2006년 연구결과 및 Bennett 등(2010)에 따르면 캘리포니아 지역의 전 체 도시 물순환 시스템에 사용되는 전력은 각각 5.1%, 4.9%, 7.7%로 분석되었다.

Segment of the Water Use Cycle	CEC Study 2005	CEC Study 2006	Bennett et. al. 2010 a&b	
Supply			15 796	170
Conveyance	10,742	10,371	15,780	172
Water Treatment				312
Water Distribution				1,000
Wastewater Treatment	2,012	2,012		2,012
Total Water Sector Electricity Use	12,754	12,383	18,282	
% of Total Statewide Electricity Requirements	5.1%	4.9%	7.7%	

Note: Excludes estimates of electricity consumption for water end uses.

그림 8. 2001년 캘리포니아의 수도 부문 전기 사용량 [GWh] 출처: CEC (2005); Bennett 등(2010a); Bennett 등(2010b); Water in the West (2013)

Twomey & Webber (2011)는 미국 전국적으로 도시 물순환 시스템 내 에너지 사용은 백 만 갤런당 3,3000~3,600 kWh로 추정되지만, 뉴욕에서는 2,700 kWh/백만 갤런에서 텍사스 오스틴에서는 백만 갤런 당 5,000 kWh에 이르는 것으로 보고하였다. 중국 창저우의 총 물 시스템의 에너지 소비를 추정했으며, 결과는 물 시스템이 전체 에너지의 10%를 소비 한다는 것을 보여주었다.

2.3 도시 물순환 시스템 내 물을 위한 탄소

탄소 배출은 에너지 소비와 밀접한 상관관계를 갖고 있으며, 도시 지역은 전 세계 탄소 배출량의 절반 이상(Duan & Chen, 2016) 또는 70%(IEA, 2015)를 차지한고 보고되었다. 즉 도시 물순환 시스템에서 발생되는 탄소는 물순환 시스템 공정에 직접적으로 기인한 것이 아닌 해당 공정에서 사용되는 에너지 때문에 발생되는 양이 대부분이다.

에너지 사용 시 온실가스 배출량 또는 단순 탄소 배출량은 전기, 태양, 연료 등과 같은 에너지원에 따라 다르다. 탄소배출량은 또한 전력 발전 방식으로 인해 다르게 발생되는 데, 예를 들어 수력발전소는 화력발전소보다 탄소배출량이 적다. 연료 소비로 인한 탄소 배출량은 해당 국가의 특성에 따라 달라지는 것이 아니라 연료 특성(예: 난방 값)에 따라 달라지며, [표 3]에서와 같이 연료 유형별로 상이한 배출 계수가 제시되었다.

Fuel	Details	Lower heating Value (TJ/Gg)	Energy basis (kgCO2e/TJ)	Maxx basis (kgCO ₂ e/	Liquid basis (kgCO ₂ e/	Gas basis (kgCO2e/ m ³⁾	Energy (kgCO ₂ e/
	Crude oil	42.3	733300	3101	2.48	III	0.26
	Orimulsion	27.5	77000	2118	2110		0.28
	Natural Gas Liquids	44.2	64200	2838			0.23
	Motor gasoline	44.3	69300	3070	2.27		0.25
	Aviation gasoline	44.3	70000	3101	2.20		0.25
	Jet gasoline	44.3	70000	3101	2.20		0.25
	Jet kerosene	44.1	71500	3153	2.49		0.26
	Other Kerosene	43.8	71900	3149	2.52		0.26
	Shale oil	38.1	73300	2793	2.79		0.26
	Gas/Diesel oil	43	74100	3186	2.68		0.27
	Residual fuel oil	40.4	77400	3127	2.94		0.28
Oil Products	Liquified Petroleum	47.3	63100	2985	1.61		0.23
Troducto	Ethane	46.4	61600	2858		3 72	0.22
	Naphtha	44.5	73300	3262	2.51	0172	0.26
	Bitumen	40.2	80700	3244			0.29
	Lubricants	40.2	73300	2947	2.95		0.26
	Petroleum coke	32.5	97500	3169			0.35
	Refinery feedstocks	43	73300	3152			0.26
	Refinery gas	49.5	57600	2851			0.21
	Paraffin waxes	40.2	73300	2947			0.26
	White Spirit/SBP	40.2	73300	2947			0.26
	Other petroleum products	40.2	73300	2947			0.26
	Anthracite	26.7	98300	2624.61			0.35
Coal products -	Coking coal	28.2	94600	2667.72			0.34
	Other bituminous	25.8	94600	2440.68			0.34

표 3. 전력 소비로 인한 국가별 CO2 배출량 (kWh당 gCO2 배출량)

Fuel	Details	Lower heating Value	Energy basis	Maxx basis	Liquid basis	Gas basis	Energy
		(TJ/Gg)	(kgCO ₂ e/TJ)	(kgCO₂e/ tonne)	(kgCO ₂ e/ litre)	(kgCO ₂ e/ m ³⁾	(kgCO₂e/ kWh)
	coal						
	Sub bituminous coal	18.9	96100	1816.29			0.35
	Lignite	11.9	101000	1201.9			0.36
	Oil shale and tar sands	8.9	107000	952.3			0.39
	Brown coal briquettes	20.7	97500	2018.25			0.35
	Patent fuel	20.7	97500	2018.25			0.35
	Coke oven coke	28.2	107000	3017.4			0.39
	Lignite coke	28.2	107000	3017.4			0.39
	Gas coke	28.2	107000	3017.4			0.39
	Coal tar	28	80700	2259.6			0.29
	Gas works gas	38.7	44400	1718.28			0.16
	Coke oven gas	38.7	44400	1718.28			0.16
	Blast furnace gas	2.47	260000	642.2			0.94
	Oxygen steel furnace gas	7.06	182000	1284.92			0.66
	Wood or Wood waste	15.6	112000	1747.2			0.40
	Sulphite lyes (Black liquor)	11.8	95300	1124.54			0.34
	Other primary solid biomass fuels	11.6	100000	1160			0.36
	Charcoal	29.5	112000	3304			0.40
Biomass	Bioogasoline	27	70800	1911.6			0.25
	Biodiesels	27	70800	1911.6			0.25
	Other liquid biofuels	27.4	79600	2181.04			0.29
	Landfill gas	50.4	54600	2751.84		2.47	0.20
	Sludge gas	50.4	54600	2751.84			0.20
	Other biogas	50.4	54600	2751.84			0.20
	Muncipal wastes (Biomass fraction)	11.6	100000	1160			0.36
	Peat	9.76	106000	1034.56			0.38
					- NDF	출처: Gome	s 등(2015)

이와 같이 탄소 배출은 에너지 믹스(energy mix)와 각 국가의 상황에 따라 달라지며, 이는 에너지 자원 조성과 같은 요인에 따라 달라진다. 에너지 믹스란 특정 지역 내에서 전기를 생산할 때 다양한 에너지원(예: 석유, 천연가스, 석탄, 핵에너지, 재생에너지)의 분배를 의미한다. 에너지 믹스 이외의 요인으로는 자원의 가용성 또는 수입 가능 여부, 충족 가능한 에너지의 범위와 특성, 경제적, 사회적, 환경적, 지정학적 맥락 및 위의 요소에 비롯된 정치적 선택들에 영향을 받는다. 아래 [표 4]는 각 지역에서 사용 가능한 에너지원에 따라 각국의 발전 시스템에서 생산된 kWh당 gCO₂ 배출량을 나타낸 것이다. 배출 인자는 전력의 발전을 위해 적용된 연료의 유형에 따라 달라진다.

표 4. 연도별 전력 소비로 인한 국가별 CO2 배출량 (kWh당 gCO₂ 배출량)

Country	2004	2005	2006	2007	2008	2009	2010
Albania	30	26	26	31	0	1	2
Armenia	114	131	130	157	159	102	92
Austria	224	218	217	204	187	158	188
Azerbaijan	677	650	671	570	534	499	439
Belarus	463	459	461	452	465	466	449
Belgium	285	275	263	254	254	218	220
Bosnia and Herzegovina	772	797	852	1007	830	806	723
Bulgaria	537	502	490	592	565	537	535
Croatia	314	331	337	422	367	291	236
Cyprus	772	788	758	761	759	743	697
Czech Republic	617	614	606	636	621	588	589
Denmark	403	369	459	425	398	398	360
Estonia	1029	1048	965	1048	1084	1078	1014
Finland	258	164	265	238	177	190	229
France	67	79	72	76	72	78	79
FYR of Macedonia	797	791	783	871	905	799	685
Georgia	89	101	147	161	79	123	69
Germany	503	486	483	504	467	467	461
Gibraltar	766	761	751	751	757	757	762
Greece	780	779	731	752	748	725	718
Hungary	448	372	373	338	351	313	317
Iceland	0	0	0	1	1	0	0
Ireland	575	584	537	510	471	452	458
Italy	497	486	509	475	452	411	406
Kazakhstan	584	570	839	658	541	433	403
Kosovo	1297	1121	1127	1089	1088	1286	1287
Kyrgyzstan	68	58	56	61	57	57	59
Latvia	97	89	113	107	114	96	120
Lithuania	68	101	100	88	83	84	337
Luxembourg	393	389	387	381	385	376	410
Malta	913	1034	954	1012	849	850	872
Montenegro		341	386	352	456	274	405
Netherlands	467	454	452	455	442	420	415

Country	2004	2005	2006	2007	2008	2009	2010
Norway	3	2	3	4	3	11	17
Poland	833	818	821	820	815	799	781
Portugal	465	521	431	396	394	379	255
Republic of Moldova	526	529	506	530	510	526	517
Romania	528	493	521	542	512	472	413
Russian Federation	402	436	445	428	426	402	384
Serbia	883	764	817	750	772	766	718
Slovak Republic	233	221	214	220	207	210	197
Slovenia	345	349	362	375	332	318	325
Spain	382	397	369	387	327	297	238
Sweden	23	19	23	17	18	19	30
Switzerland	28	32	33	30	29	26	27
Tajikistan	22	21	21	20	20	17	14
Turkey	426	438	452	494	511	496	460
Turkmenistan	872	872	872	872	927	865	954
Ukraine	360	397	430	440	447	390	392
United Kingdom	491	491	515	506	499	453	457
Uzbekistan	588	588	583	609	543	566	550
European Union	391	387	391	385	374	357	347

출처: Gomes 등(2015)

Sharma 등(2008)은 거주자 86,000명의 주거 지역에서 도시 물순환 시스템 기반시설의 건 설 및 운영 내에서 방출된 온실가스 배출량을 분석했으며, 해당 과정에서는 16,000에서 24,000톤의 CO₂eq.를 발생시키는 것을 보고하였다. Friedrich 등(2009)은 200,000명의 거주 자에 대해 연간 6,000에서 10,000톤의 CO₂eq. 값을 얻었다. Munoz 등 (2010)은 광범위한 지역에서 탄소 인텐시티는 1.5에서 2.5 CO₂eq./m³로 제시하였다.
2.4 도시 물순환 시스템 에너지 인텐시티 영향 요인

2.4.1 영향 요인 종류 및 분류

도시 물순환 시스템에서 물과 에너지의 연관관계는 각각의 나라와 지역마다 다르며, 넥 서스 관점에서 의사결정을 위해서는, 해당 지역의 도시 물순환 시스템의 에너지 인텐시 티에 영향을 주는 요소들을 파악하고 그 관계를 이해하는 것이 필수적이다.

에너지 인텐시티 값의 차이는 기후와 외부적인 요소, 지리적 특징, 시스템 특징 및 시스 템의 운영관리와 밀접한 관계가 있으며, 세부 영향 요소들은 표 5에 나타난 바와 같다. 각각의 세부 영향 요소들과 에너지 인텐시티의 관계는 2.4.2절에서 2.4.5절에 자세히 설명 되어 있다.

Category	Factors
	Precipitation
Climete	Temperature
Ciimate	Climate type
	Climatic behavior (e.g. drought)
	Topography
	Distance from source to consumer
Geographical Characteristics	Water source type
	The location of source
	Elevation change
	Distribution main length
	Raw water quality
	Process & technology
	Regulation & standards
Characteristics of Urban Water	System condition
System	Population served
	Service area
	Water demand
	Income/affluence
	Economic composition
	Energy efficiency (e.g. Pumping efficiency)
	Distribution pressure
0.9.14	System operation rule
O&M	Water loss
	Energy management system
	Energy recovery

표 5. 도시 물순환 시스템에서 에너지 인텐시티에 미치는 영향

또한 취수, 도·송수, 정수처리, 배·급수, 용수 사용, 하수집수, 하서처리, 재이용 및 방류의 도시 물순환 과정에서 에너지가 사용되는 주된 동인은 [표 6]와 [그림 9]에 설명된 바와 같다.

Urban water cycle	Sub-segment	Primary Energy Drivers
	Surface water	-
Abstract		- Volume of water pumped
(Intake)	Groundwater	- Depth of well
		- Pump & motor efficiency
		- Volume of water being conveyed
	Pipelines,	- Distance
0	aqueducts,	- Elevation
Conveyance	irrigation	- Conveyance system efficiency: condition, vintage & efficiency of
	canals	pumps & motors; type of conduct (pipeline vs. open channel,
		lined vs. unlined), rate of water leaks, seepage & evaporation
		- Treatment plant configurations
X47		- The number of times water is treated
Water treatment		- The types of water disinfection technologies used
		- Water quality standards
		- Pumping energy determined by volume, system size & pressure,
Course los /		topography of distribution network
Supply/	Flat, moderate,	- System age
distribution	nilly, variable	- Water loss
		- Energy recovery (Mini-hydro generation)
		- Plant capacity
	Deriver	- Level of treatment
Wastewater	Primary,	- Treatment technologies used
treatment	secondary,	- Wastewater influent quality
	tertiary	- Discharge requirements
		- Energy recovery (Biosolids)

표 6. 도시 물순환 시스템에서 에너지가 사용되는 주요 동인

그림 9. 도시 물순환 시스템 공정 중 에너지 사용

출처: Porse 등(2020)

2.4.2 기후

가. 연평균 강수량 (장기 기후 변동)

Lam 등(2017)은 30개 도시의 급수 시스템에서 장기 연평균 강수량이 에너지 인텐시티에 미치는 영향을 분석하였다. 해당 연구에서 고려된 장기적 연평균 강수량(24~115년)은 지 역 강우 패턴의 대략적인 특성을 보여줄 수 있어, 장기 기간의 기후변화를 나타내는 변 수로 사용되었다. 그 결과 [그림 10]에 나타난 바와 같이 에너지 인텐시티가 높은 급수 시스템을 갖춘 대부분의 도시(예: 로스앤젤레스, 샌디에이고, 멕시코시티)는 연평균 강수 량이 낮은 지역에 위치해 있다. 그러나 이 높은 에너지 인텐시티 그룹 이외에는 평균 연 간 강수량과 에너지 인텐시티 사이에는 강한 관계가 없는 것으로 파악되었다.

그림 10. 30개 도시에서 연평균 강수량과 에너지 인텐시티의 관계 출처: Lam 등(2017)

나. 가뭄(단기 기후 변동)

Lam 등(2017)은 일부 급수 시스템의 에너지 인텐시티는 가뭄으로 인한 단기 기후에 크게 영향을 받는다고 보고하였다. Van Dijk 등(2013)은 상수도 부문에서 호주 지역의 가뭄이 에너지 인텐시티에 미치는 영향을 분석하였다. 2001~2009년 호주 남동부에서 가장 심했 던 호주 밀레니엄 가뭄시기에 호주의 브리즈번, 멜버른, 시드니의 에너지 인텐시티는 2002년 수준보다 각각 96%(2010년 기준), 129%(2011년 기준), 325%(2008년 기준) 증가하였 다. 브리즈번(동남부 퀸즐랜드 지역의 상수도 공급망의 경우는 2008년부터 2012년까지 필 요 에너지가 높은 담수화 플랜트와 간접 음용수 재활용 시스템 운영에 기인한 것으로 판 단된다. 멜버른은 새로운 유역간 물 이송과 계획과 야라 강으로부터의 추가 취수에 의해 사용된 에너지양이 증가하여 에너지 인텐시티가 증가하였다. 시드니의 경우에는 2010년 부터 2012년까지 신설된 담수화공장이 에너지 인텐시티 증가의 주요 원인으로 판단되었 다. Vieira 등(2014)은 가뭄에 대응하기 위한 우수와 같은 대체 수자원의 확보와 도시 유출의 개선이 에너지 인텐시티에 미치는 영향을 분석하였다. 일반적으로 연간 강수량이 많은 도시는 가뭄과 같은 문제에 대응하기 위해 비 음료용 물 수요의 일부를 충족시킬 목적으 로 우수를 활용할 수 있다. 이러한 예로서 호주에서는 심각한 가뭄(2001~2009)과 리베이 트 제도에 따라 실내 및 실외 물 사용을 위한 빗물 탱크가 크게 증가했다. 2007~2013년 빗물탱크를 설치한 가구의 비율은 브리즈번은 18.4%에서 47%로 떨버른은 11.6%에서 31.1%로, 시드니는 10.3%에서 19%로 증가했다. 이러한 빗물 집수 시스템의 설계에 따라 해당 지역 도시 물순환 시스템의 에너지 인텐시티는 크게 증가 될 수 있다. 이론적 및 경험적 연구에서 이러한 시스템의 에너지 인텐시티는 각각 0.20 kWh/kL 및 1.40 kWh/kL 로 추정하였다. 이것은 빗물 집수 시스템이 일부 도시에서 낮은 에너지 인텐시티의 수원 으로 중앙집중식 급수 시스템을 보완할 수 있는 가능성을 나타내지만, 이러한 시스템은 에너지 영향을 고려하도록 신중하게 설계되어야 할 필요가 있음을 시사하고 있다.

다. 기후 유형

Sanjuan-Delmas 등(2015)은 도·송수 및 배·급수 시스템에서 기후 유형에 따른 에너지 인텐 시티의 변화를 분석하였다. 그 결과 지중해성 기후 도시는 대양성 기후 도시보다 거의 7 배나 높은 상대적인 전기 소비량을 보여주었다. 이것은 대서양 지역의 높은 물 가용성으 로 설명될 수 있는데, 더 접근하기 쉬운 장소로부터 물을 공급받을 수 있기에 필요 관로 의 길이가 짧아 작은 에너지를 필요하게 된 것이다. 그러나 [그림 11]에서와 같이 상자 그림을 보면 두 군집의 에너지 인텐시티의 중위수는 비슷하다는 것도 알 수 있었으며, 이는 대양성 기후 사례의 수가 적기 때문인 것으로 판단된다(대양성 기후 4건, 지중해성 기후 46건).

그림 11. 기후 유형에 따른 전력 소비량 분포

출처: Sanjuan-Delmas 등(2015)

2.4.3 지리적 특징

가. 표고차

Lam 등(2017)은 상수관망 시스템(도·송수 및 배·급수 시스템)의 표고차(사용자 또는 배수 지의 고도-상수원 고도)와 에너지 인텐시티 사이의 관계를 분석하였다. 그 결과 [그림 12] 에서와 같이 상수관망 시스템에 대한 고도 차이와 에너지 인텐시티 사이에 거의 선형적 인 상관관계가 있음을 명확하게 보여주었다. 상대적으로 상수관망 시스템에서 에너지 인 텐시티가 낮은 일부 도시들은 지역은 해당지역의 상수관망 시스템을 건설하는 데 있어서 그들의 지역적 지형을 이용한 것으로 간주될 수 있다. 에너지 강도가 0.15 kWh/m³에 불 과한 삿포로를 예로 들 수 있다. 삿포로의 급수 시스템은 펌프 에너지 사용을 최소화하 기 위해 각 급수 시스템 구성 요소가 이전 구성 요소(즉, 댐, 원수 추출 지점, 정수 처리 공장, 저수지)보다 낮은 표고에 위치하는 방식으로 설계 및 구축되었으며, 이때문에 도시 수도의 약 80%가 중력에너지로 공급된다.

그림 12. 다양한 상수관망 시스템에서 에너지와 표고차의 관계 출처: Lam 등(2017)

높은 표고차가 발생하는 도시에서는 투입된 에너지를 회수하기 위한 다양한 시도가 이루 어지고 있다. 그 예로 캘리포니아 주 물 프로젝트에서는 북부 캘리포니아에서 남부 캘리 포니아(로스앤젤레스 및 샌디에이고와 같은 도시 포함)로 물을 이송하고 있다. 모든 지선 을 포함한 전체 수로는 1100 km가 넘으며, 테하치피 산맥 위로 600 m에 이르는 높이 위 로 지나야 된다(California Department of Water Resources, 2013). 이와 같은 시스템에서 는 에너지 인텐시티를 줄이기 위하여 에너지를 회수하기 위한 소수력 발전 시스템을 설 치하였다.

나. 평지비(Plain area ratio)

Huang 등(2018)은 물의 이송과 분배에 있어서 지형이 에너지 소비에 미치는 영향을 정량 적으로 연구하기 위해 평지비를 지표로 선택하여, 2015년 자료를 기반으로 중국내 도시 들에서 평지비와 에너지 인텐시티의 상관관계를 분석하였다. 그 결과 [그림 13]에서와 같 이 평지 면적 비와 에너지 인텐시티는 강한 상관관계를 가지고 있음을 보여주었다.

그림 13. 2015년 중국의 도시 평지비와 에너지 인텐시티의 관계 출처: Huang 등(2018)

다. 위치(내륙 & 해안)

Sanjuan-Delmas 등(2015)은 내륙과 해안 지역에 따른 단위관로 당 에너지 인텐시티의 변 화를 분석하였다. [그림 14]에서와 같이 분석 결과 내륙 지역의 단위관로 당 에너지 인텐 시티의 최고값이 해안지역의 최고값보다 7배 가까이 높지만 평균값은 뚜렷한 차이를 보 이지 않는 것으로 나타났다. 해안 지역은 상대적으로 내륙 지역의 사례보다 적어서(해안 10건, 내륙 40건) 해안 지역의 산포는 내륙 지역에 비해 낮게 나타났다. 해안 지역 도시 의 이러한 낮은 에너지 소비량에 대한 주요 요인 중 하나는 해안 도시는 주로 평탄한 곳 (충적 평야 지대)에 자리 잡고 있어, 취수원과 사용자간의 표고차가 적음에 기인하는 것 으로 판단된다. 따라서 물의 운송 시 펌프 에너지를 활용하는 것보다 중력을 이용하는 경우가 더 많아 동일한 양의 물을 공급하는데 필요한 에너지는 줄어들게 된다.

그림 14. 위치에 따른 전력 소비량 분포

출처: Sanjuan-Delmas 등(2015)

2.4.4 도시 물순환 시스템 특징

가. 도시 총 급수량

Huang 등(2018)은 중국 도시별 총 급수량과 에너지 인텐시티의 상관관계를 검토하였다. 단 이 분석에서 에너지 인텐시티가 비정상적으로 낮은 특이치를 가지는 3도시(푸저우, 하 일빈, 난창)는 선형 회귀 분석에서 고려하지 않았다. 도시의 총 급수량은 일반적으로 도 시인구와 1인당 물사용량에 크게 영향을 받는다. [그림 15]에서 나타난 바와 같이 도시 총급수량과 에너지 인텐시티는 음의 상관관계를 가지는 것으로 분석되었다. 이는 도시별 총 급수량이 큰 대도시의 경우 다른 도시에 비해 밀집된 도시 배치와 평지의 높은 비중, 가까운 수원 등이 에너지 사용량을 줄이는 것에 기인하는 것으로 판단된다.

또한, 스위스의 한 연구에서는 공급된 물의 양이 4,911,000 m³에서 12,000 m³로 줄어들면 서, 물 단위당 에너지 소비량이 0.19 kW/m³에서 0.73 kWh/m³로 증가한다는 것을 보고하 였다(Pelli & Hitz, 2000).

그림 15. 2015년 중국 도시별 총 급수량 및 에너지 인텐시티의 관계 출처: Huang 등(2018)

나. 도시 인구

Sanjuan-Delmas 등(2015)은 도시 인구에 따른 단위 관로 길이 당 에너지 인텐시티의 변화 를 검토하였다. 도시는 인구에 따라 소규모(인구 최대 10,000명)와 중간규모(인구 10,000 ~50,000명)로 분류하였다. 도시 인구 규모별로 살펴보면 [그림 16]에서와 같이 소규모 도 시의 최댓값은 중간규모 도시의 최댓값에 비해 단위 관로 길이 당 에너지 인텐시티가 14 배 가까이 많아 인구 규모가 상수관망 전력 소비에 영향을 미칠 가능성이 높은 것으로 관측됐다. 또한 모든 중간규모 도시는 연간 3.79E⁻³ kWh/m³/km 미만의 값을 나타내었다. 이에 비해 소규모 도시의 평균값이 중소규모 도시보다 3배 높은 등 훨씬 폭넓은 범위를 나타내었다. 이러한 소규모 도시의 높은 에너지 소비는 규모 경제 효과로 설명될 수 있 으며, 거주자 수가 많다는 것은 자원을 상대적으로 더 효율적으로 사용한다는 것을 의미 할 수 있다.

출처: Sanjuan-Delmas 등(2015)

다. 인구 밀도

Sanjuan-Delmas 등(2015)은 도시 인구밀도에 따른 단위 관로 길이 당 에너지 인텐시티의 변화를 검토하였다. 제곱킬로미터 당 90명이 이하인 도시는 인구 밀도가 낮은 지역으로 구분하였으며, 제곱킬로미터 당 90명 이상의 도시는 인구 밀도가 높은 지역으로 판단하 였다. 그 결과 [그림 17]에서 나타난 바와 같이 인구밀도가 낮은 도시는 인구밀도가 높은 도시보다 7배 높은 단위 관로 길이 당 에너지 인텐시티을 나타내었다. 또한 에너지 소비 가 많은 모든 지자체는 인구 밀도가 상대적으로 낮다는 것을 알 수 있었다. 그리고 일정 한 값 이상의 인구밀도에서는 단위 관로 길이 당 에너지 인텐시티 값은 인구 밀도의 증 가와 크게 연관이 없는 것으로 나타났다. 인구밀도에 따라 에너지 인텐시티가 변동되는 이유는 인구가 적은 경우의 상수도 시스템은 더 긴 거리를 포함해야 하는 필요성에 기인 할 수 있다. 그리고 저밀도 마을에서는 지형 내에 있는 건물의 위치가 전체 전력 소비에 더 큰 영향을 미칠 수 있으며, 이는 더 큰 전력 소비 값을 초래할 수 있다. 반면에, 인구 밀도가 높은 지역은 또한 건물 꼭대기까지 물을 올리기 위해 추가적인 에너지를 필요로 한다.

출처: Sanjuan-Delmas 등(2015)

라. 관로 연장

일반적으로 관로 연장이 긴 경우 필요로 하는 에너지의 양은 증가하게 된다. 관로가 길 경우 관로 길이에 비례하여 수두 소실이 발생하게 되며, 공급되는 라인에 표고 변동이 크게 발생될 가능성이 높기 때문이다.

2.4.5 운영관리

가. 상수관망 수압

Huang 등(2018)은 [그림 18]에서와 같이 용수의 도·송수 및 배·급수 단계에서 에너지 인텐 시티는 상수관망 수압에 직접적이고 강하게 영향을 받음을 보여주었다. 수도사업자는 급 수 구역의 모든 사용자들에서 최소요구 수압을 만족시켜야 한다. 이를 만족시키기 가장 어려운 사용자의 위치를 임계지점이라고 하며, 이러한 임계지점에서 최소 요구 수압을 만족시키기 위해 펌프의 토출 압력을 결정하게 된다. 이와 같이 요구되는 상수관망의 수 압이 높을 때 용수를 공급하기 위한 에너지의 사용량, 즉 펌프 에너지가 많이 필요하게 된다.

그림 18. 2015년 중국 도시별 평균 상수관망 수압 및 에너지 인텐시티의 관계 출처: Huang 등(2018)

나. 누수율

상수관망에서 발생되는 누수 중 실손실은 공급과정에서 발생되는 손실로 사용자에 전달 되지는 않는다. 그러나 해당 용수를 공급하고 처리하는데 에너지가 소모되므로, 누수율 중 실손실은 에너지 인텐시티에 직접적인 영향을 미친다.

다. 시스템 에너지 효율의 향상

Lam 등(2017)은 시계열 분석 결과에서 에너지 효율 개선에 의해 5개 도시는 상수도 시스 템의 에너지 인텐시티가 5% 보다 더 크게 감소한 것으로 분석하였다. Wasserbetriebe (2011)는 베를린 지역의 지하수 취수 수압 최적화, 양수펌프 효율 개선, 고도차 최소 관망 설계 등을 통해 급수시스템의 에너지 인텐시티가 2006년 0.536 kWh/kL에서 2010년 0.505 kWh/kL로 감소했다고 보고했다. Chiplunkar 등(2012)은 에너지 감사 및 펌프 교체를 통해 잼세드푸르 지역의 에너지 사용을 줄일 수 있음을 보여주었다. 그리고 Danish Water and Waste Water Association (2014)는 펌프 관리의 최적화, 부스터 펌프의 업그레이드를 통해 시스템의 에너지 효율을 개선할 수 있었다.

라. 물 절약

Lam 등(2017)은 물 절약으로 인한 에너지 절약은 도시마다 크게 다를 수 있다는 것을 관 찰할 수 있다. 예를 들어, 샌디에이고의 단위 체적 당 용수 절약(per unit volume of water saving)에 따른 에너지 절약 편익(즉, 0.11 kWh/kL)은 멜버른보다 더 큰 값을 나타 내었다.

2.5 국가 및 공정별 도시 물순환 시스템 에너지 인텐시티 사례

2.5.1 에너지 인텐시티 매트릭스

본 연구에서는 기존의 문헌에서 제시된 도시 물순환 시스템의 공정별 에너지 인텐시티를 조사하여 에너지 인텐시티 매트릭스를 구축하였다. 일반적인 도시 물순환 시스템의 공정 은 취수, 도·송수, 정수처리, 배·급수, 용수 사용, 하수 집수, 하수 처리, 재이용, 방류로 분 류된다. 그러나 문헌 조사의 결과를 효율적으로 나타내기 위하여 [표 7]과 같이 전체적인 공정과 단위 공정으로 분류하였다. 전체적인 공정은 도시 물순환 시스템의 전체 시스템 (Total), 상수 시스템(total drinking water system, TDWS), 그리고 하수 시스템(total wastewater system, TWWS)의 3가지로 분류하였다. 급수 시스템은 취수, 도송수, 정수처 리, 배·급수 공정들을 포함하며, 하수 시스템은 하수 집수, 하수처리, 방류 공정을 포함한 다. 단위 공정은 지하수의 취수(abstracting groundwater, Abs_g), 지표수 도수(conveyance surface water, Con s), 취수와 도수(abstraction and conveyance, Abs.Con), 전체 정수처리 공정(water treatment all, WT_all), 지표수 정수 처리(water treatment surface water, WT_s), 지하수 정수 처리(water treatment groundwater, WT_g), 담수화(water treatment desalination, WT_d), 배·급수(distribution, Dis.), 용수 사용(end-use, EU), 하수 집수 (wastewater collection, WWC), 하수 처리(wastewater treatment, WWT), 용수 재이용 (water resue, WR) 및 방류(discharge, D)로 분류하였다. 총 367개의 자료를 검토 하였으 며, 각 자료의 출처, 지역 및 에너지 인텐시티 값들은 [표 11]에 나타난 바와 같다.

현재 도시 물순환 시스템 에너지 인텐시티 매트릭스는 공정에 기반을 두어 분류를 하였 지만, 향후 도시 범위의 지역에 따른 분류 및 그룹화가 필요할 것이다. 이를 활용하여 각 각의 도시들은 해당 도시들이 속하는 그룹을 파악할 수 있으며, 이를 기반으로 보다 효 율적인 도시 물순환 시스템의 에너지 관리 전략의 수립이 가능할 것이다.

위에 분류한 바와 같은 공정별 에너지 인텐시티의 상자그림과 기술통계값은 [그림 19]와 [표 7]에 나타난바와 같다. 각 공정별로 몇몇 인텐시티 값은 매우 높은 값을 나타내어 큰 표준편차를 띄었으며, 평균값이 중앙값 또는 삼 사분위수 보다 높은 값을 나타내는 경향 을 확인할 수 있었다. 따라서 본 연구에서는 중앙값, 일 사분위수, 삼 사분위수와 사분범 위를 중심으로 공정별 에너지 인텐시티를 분석하였다.

도시물순환 시스템 전체 시스템, 상수 시스템, 하수 시스템의 에너지 인텐시티 중앙값은 각각 1.210 kWh/m³, 0.519 kWh/m³, 0.580 kWh/m³의 값을 나타내었다. 도시 물순환 시스 템에서 1톤의 물을 공급하고 처리하기 위해서는 1.210 kWh의 에너지가 소모되는 것으로 볼 수 있다. 하수 시스템이 상수 시스템에 비하여 약 11.8%인 0.061 kWh의 에너지를 더 사용하는 것으로 분석되었으며, 그 차이는 크지 않는 것으로 파악되었다. 지하수의 취수(Abs_g), 지표수 도수(Con_s), 지표수 정수처리(WT_s), 담수화(WT_d), 배·급 수(Dis.), 용수 사용(EU), 하수 집수(wastewater collection, WWC), 하수처리(wastewater treatment, WWT), 용수 재이용(WR) 및 방류(D) 공정의 에너지 인텐시티 중앙값은 각각 0.505 kWh/m³, 0.370 kWh/m³, 0.382 kWh/m³, 3.170 kWh/m³, 0.255 kWh/m³, 3.211 kWh/m³, 0.061 kWh/m³, 0.440 kWh/m³, 0.820 kWh/m³, 0.054 kWh/m³의 값을 나타내었다.

여러 문헌에서 언급한 바와 같이 용수 사용에서 사용되는 에너지가 제일 높은 중앙값인 3.170을 나타내었다. 도시별 용수 사용에 대한 에너지 사용의 편차는 다른 공정에 비해 매우 크기 때문에 도시 물순환 시스템의 에너지 사용을 분석하기 위해서 가장 우선적으 로 분석이 수행되어야 하는 항목으로 판단된다. 이와 같은 특성 때문에 몇몇 연구에서는 용수 사용 부분을 도시 물순환 시스템에서 제외하고 분석하기도 한다.

기후변화와 같은 외부 영향에 의해 수자원이 부족할 경우 도입되는 담수화와 물 재이용 은 많은 에너지를 필요로 하는 것으로 파악되었다. 담수화와 용수 재이용 공정의 중앙값 은 각각 3.170, 0.820으로 용수 사용을 제외하고 가장 높은 값을 나타내었다. 담수화 공정 의 발전으로 에너지 사용 효율이 많이 개선되고 있지만, 여전히 담수화 공정은 매우 에 너지 집약적인 공정임을 알 수 있었다. 그리고 용수 재이용을 통해 수자원을 확보하는 것이 담수화보다 에너지 관점에서 우선되어야 하는 것을 알 수 있었다. 정수처리와 하수 처리와 같은 처리 공정과 펌프 에너지를 필요로하는 지하수 취수, 도수, 배·급수 공정에서 일정부분 이상의 에너지를 필요로 함을 알 수 있었다. 그리고 중력을 이용하는 경우가 많 은 하수 집수와 방류 시 필요 에너지는 매우 낮은 값을 나타내었다.

대분류		Total		Abs.	Con.	Abs. Con		W	T		Dis.	EU	WWC	WWT	WR	D
중분류	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
평균	2.334	1.029	1.024	0.822	0.910	0.820	0.294	0.382	-	11.963	0.439	54.491	0.181	0.494	1.072	0.053
표준 오차	0.728	0.212	0.277	0.178	0.211	0.185	0.099	-	-	4.691	0.110	51.297	0.080	0.044	0.238	0.014
중앙값	1.210	0.519	0.580	0.505	0.370	0.396	0.090	0.382	-	3.170	0.255	3.211	0.061	0.440	0.820	0.054
최빈값	1.155	0.850	0.840	0.415	0.832	0.040	0.029	-	-	3.170	0.100	-	0.710	0.410	0.820	0.055
일사분위수	0.865	0.357	0.470	0.372	0.150	0.048	0.029	-	-	1.197	0.136	3.161	0.037	0.300	0.588	0.038
삼사분위수	1.690	0.903	0.840	0.874	1.813	1.636	0.298	-	-	5.450	0.385	157.100	0.140	0.711	1.445	0.068
표준 편차	3.492	1.646	1.327	0.794	1.099	0.927	0.560	-	-	30.761	0.762	102.593	0.264	0.246	0.860	0.034
분산	12.191	2.708	1.760	0.630	1.208	0.860	0.314	-	-	946.217	0.580	10525.32	0.070	0.060	0.739	0.001
첨도	13.661	26.006	8.237	4.636	1.513	-0.647	9.415	-	-	12.528	25.992	4.000	1.853	0.495	1.969	2.448
왜도	3.584	4.594	3.008	2.197	1.448	0.968	3.098	-	-	3595	4.764	2.000	1.846	1.037	1.608	-0.022
범위	15.900	11.210	5.190	3.110	4.070	2.624	2.385	0.000	0.000	142.486	4.890	205.220	0.689	0.942	2.947	0.106
최솟값	0.700	0.090	0.310	0.190	0.000	0.000	0.005	0.382	0.000	0.015	0.010	3.160	0.022	0.198	0.215	0.000
최댓값	16.600	11.300	5.500	3.300	4.070	2.624	2.390	0.382	0.000	142.500	4.900	208.380	0.710	1.140	3.162	0.106
관측수	23	60	23	20	27	25	32	1	0	43	48	4	11	31	13	6

표 7. 도시 물순환 시스템 공정별 에너지 인텐시티 기술통계

에너지 인텐시티 평균값은 전체 도시 물순환 시스템에서 2.334 kWh/m³, 상수 시스템에서 1.029 kWh/m³, 하수 시스템에서 1.024 kWh/m³로 나타났으며, 표준편차는 3.492 kWh/m³, 1.646 kWh/m³, 1.327 kWh/m³로 확인되었다. 상수 시스템과 하수 시스템의 평균값은 약 0.486%의 작은 차이를 보였지만, 최솟값과 최댓값의 범위는 각각 11.210 kWh/m³와 5.190 kWh/m³로 큰 차이를 보이며 19.380%의 표준편차 차이를 나타내었다.

도시 물순환 시스템, 상수 시스템, 하수 시스템의 에너지 인텐시티 값들의 특정한 분포를 띄는지 확인하기 위해 적합도 검토를 수행하였다. 이를 위한 각 시스템별 에너지 인텐시 티 히스토그램, 밀도함수, 누적 밀도함수, Q-Q plot은 [그림 20-24]에 나타난 바와 같다.

그림 20. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 에너지 인텐시티 히스토그램

그림 21. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 에너지 인텐시티 밀도함수

그림 22. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 에너지 인텐시티 누적 밀도함수

그림 24. 전체 도시물순환 시스템, 상수 시스템, 하수시스템 에너지 인텐시티 Q-Q plot

전체 도시 물순환 시스템의 분포를 검토하기 위해 총 네 개의 분포(정규분포, 와이블 분 포, 대수정규분포, 감마 분포)를 고려하였다. 조사된 값에 따른 추정된 매개변수의 값과 그래프 비교는 [표 8]과 [그림 25]에 나타난 바와 같다. 정규분포의 평균은 2.333 kWh/m³ 와 표준분포는 3.415 kWh/m³, 와이블 분포의 형상(shape) 모수는 0.995, 범위(scale) 모수 는 2.328로 산정되었다. 대수정규분포의 로그 평균은 0.412, 로그 표준분포는 0.755이었으 며, 감마 분포의 형상(shape) 모수는 1.288, rate 모수 0.552의 값을 나타내었다. 샤피로-윌크 검정과 콜모그로프-스미르노프 검정 결과 P-value는 대수정규분포에서 가장 높게 산정됨을 확인하였다.

표 8. 도시 물순환 시스템 전체 에너지 인텐시티 분포의 매개변수 및 검정값

	Nc	orm	Wei	bull	Lno	orm	Gan	nma
Estimated	Mean	2.333913	Shape	0.9951425	Meanlog	0.4117578	Shape	1.2882006
parameter	SD	3.414870	Scale	2.3276492	Sdlog	0.7553611	Rate	0.5520157
P-value with SW test	4.45	1e-08				1		
P-value with KS test	0.00)3439	0.07	7741	0.2	021	0.03	3171

Q-Q plot

그림 25. 도시 물순환 시스템 전체 에너지 인텐시티 분포 비교

상수 시스템 분포 피팅 결과, 각 분포별 매개변수 값과 검정값은 [표 9]와 같이 나타났다. 콜모그로프-스미르노프 검정 결과 대수정규분포의 P-value가 가장 높게 산정되며 가장 높은 유의 수준을 보였다. [그림 26]에서도 대수정규분포가 상수 시스템 인텐시티 분포와 가장 근접하게 나온 것을 확인할 수 있었다.

표 9. 상수 시스템 에너지 인텐시티 분포의 매개변수 및 검정값

	No	orm	Wei	ibull	Lno	orm	Gan	nma
Estimated	Mean	1.029042	Shape	0.9272535	Meanlog	-0.5133796	Shape	1.058193
parameter	SD	1.631851	Scale	0.9826407	Sdlog	0.9330441	Rate	1.028254
P-value with SW test	3.374	1e-13						
P-value with KS test	1.22	e-06	0.0	1485	0.2	476	0.00	5024

그림 26. 상수 시스템 에너지 인텐시티 분포 비교

하수 시스템 분포 피팅 결과, [표 10]에서와 같이 정규분포의 평균과 표준편차는 각각 1.024 kWh/m³, 1.297 kWh/m³로 산정되었으며, 와이블 분포의 형상 모수와 범위 모수는 각각 1.080, 1.064, 대수정규분포의 로그 평균과 로그 표준편차는 각각 -0.342, 0.708, 그리 고 감마 분포의 형상 모수와 rate 모수는 1.513, 1478로 분석되었다. 정규분포, 와이블 분 포, 대수정규분포, 감마 분포 P value는 각각 0.003, 0.383, 0.096, 0.077로 와이블 분포가 가장 크게 나타났다. 분석된 분포별 확률밀도함수, 누적밀도함수, Q-Q Plot과 P-P Plot은 [그림 27]과 같이 나타났다.

표 10. 하수 시스템 에너지 인텐시티 분포의 매개변수 및 검정값

	No	orm	Wei	bull	Lno	orm	Gan	nma
Estimated	Mean	1.023913	Shape	1.079733	Meanlog	-0.3418290	Shape	1.513475
parameter	SD	1.297410	Scale	1.063805	Sdlog	0.7082626	Rate	1.478154
P-value with SW test	6.983	3e-08						
P-value with KS test	0.00	2566	0.3	383	0.09	9591	0.07	7741

Q-Q plot

그림 27. 하수 시스템 에너지 인텐시티 분포 비교

D. (Total		Abs.	Con.	Abs. Con		W	ľΤ		Dis.	EU	WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
The World Bank (2013)	San Diego, US	16.6															
Mo et al. (2014)	Tampa Bay, US	8.1															
Hardy et al. (2012)	Spain	4.175															
Kenway et al. (2008)	Adelaide, Australia	2.61															
Amores et al. (2013)	Tarragona, Spain	1.94															
Kenway et al. (2008)	Perth, Australia	1.69															
Lemos et al. (2013)	Aveiro, Portugal	1.63															
Kenway et al. (2008)	Sydney, Australia	1.56															
Zappone et al. (2014)	Turin, Italy	1.32															
Kenway et al. (2008)	Brisbane, Australia	1.25															
Kenway et al. (2008)	Melbourne, Australia	1.22															
Kenway et al. (2008)	Glod Coast, Australia	1.21															
Miller et al. (2013)	India	1.165															
Venkatesh and Brattebø (2011)	Oslo, Norway	1.155															
Racoviceanu et al. (2007)	Toronto, Canada	1.155															
Maas (2009)	Province of Ontario, Canada	1.1															
Kenway et al. (2008)	Auckland, New Zealand	1.05															
Wang et al. (2016), Li et al.(2016), Maddocks et al.(2015)	China	0.865															
Cheng (2002)	Taipei, Taiwan	0.825															
Lundie et al. (2004)	Sydney, Australia	0.82															
Friedrich et al. (2009)	Durban, South Africa	0.77															
Stillwell et al. (2011)	Texas, US	0.77															
Lassaux et al. (2007)	Wallon region, Belgium	0.7															
The World Bank (2013)	San Diego, US		11.3														
	UAE, Masdar		4.14														
Lam et al. (2016), Poussade et al. (2011)	Brisbane, Austrialia		4.013														
Hardy et al. (2012)	Spain		3.61														
Mo et al. (2014)	Tampa Bay, US		3.3														
California Energy Commission (2006)	US, Southern California		2.935														
	Bangalore, India		2.31														
Cohen et al. (2004)	US, San Diego		1.97														
Kenway et al. (2008)	Adelaide, Australia		1.92														
Kenway et al. (2008)	Sydney, Australia		1.1														
Kenway et al. (2008)	Perth, Australia		0.98														

표 11. 문헌에서 제시된 도시 물순환 시스템 공정별 에너지 인텐시티

Deferrer er	Decise		Total		Abs.	Con.	Abs. Con		W	ľΤ		Dis.	EU	WWC	WWT	WR	D
Kelerence	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
Kenway et al. (2008)	Australia, Sydney		0.95														
California Energy Commission (2006)	US, Northern California		0.925														
Majid et al. (2020)	Kennet Valley, UK		0.92														
Tan et al. (2015)	Qingdao, China		0.905														
Maas (2009)	Province of Ontario, Canada		0.895														
Amores et al. (2013)	Tarragona, Spain		0.85														
Zappone et al. (2014)	Turin, Italy		0.85														
Lemos et al. (2013)	Aveiro, Portugal		0.79														
-			0.7715														
-	US, Iowa		0.732														
Majid et al. (2020)	Henley, UK		0.71														
Racoviceanu et al. (2007)	Toronto, Canada		0.685														
Kenway et al. (2008)	brisbane, Australia		0.68														
	Toronto, Canada		0.676														
Majid et al. (2020)	Guildford, UK		0.65														
Majid et al. (2020)	SWA, UK		0.63														
Wang et al. (2016), Li et al.(2016), Maddocks et al.(2015)	China		0.55														
-	Tokyo, Japan		0.528														
Majid et al. (2020)	London, UK		0.52														
Lam et al. (2016) Poussade et al.(2011)	Brisbane, Austrialia		0.518														
USGS (2000)			0.511														
-	US, Wisconsin		0.502														
-			0.502														
Majid et al. (2020)	SWOX, UK		0.47														
Olsson (2012)	Sweden		0.46														
Miller et al. (2013)	India		0.44														
Stillwell et al. (2011)	Texas, US		0.43														
Venkatesh and Brattebø (2011)	Oslo, Norway		0.415														
-	US, Massachusetts		0.396														
Lassaux et al. (2007)	Wallon region, Belgium		0.39														
Navigant Consulting (2014)	San Francisco, US		0.39														
Cheng (2002)	Taipei, Taiwan		0.385														
Cheng (2002)	Taiwan, Taipei		0.38														
			0.37														
	Yokohama, Japan		0.353														
Venkatesh et al. (2014)	Oslo, Norway		0.351														

Deferrer	Design		Total		Abs.	Con.	Abs. Con		W	ľΤ		Dis.	EU	WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
Lundie et al. (2004)	Sydney, Australia		0.34														
Loubet et al. (2014)	Sydney, Australia		0.32														
Loubet et al. (2014)	Copenhagen, Denmark		0.28														
Danish Water and Waste Water Association (2014)	Copenhagen, Denmark		0.25														
Shrestha (2015)	Bangkok, Thailand		0.217														
Kenway et al. (2008)	Auckland, New Zealand		0.21														
Kenway et al. (2008)	Glod Coast, Australia		0.21														
Friedrich et al. (2009)	Durban, South Africa		0.19														
Western Resource Advocates (2009)	Denver, US		0.188														
-	Melbourne, Australia		0.139														
-	Sapporo, Japan		0.13														
Kenway et al. (2008)	Australia, Melbourne		0.12														
Kenway et al. (2008)	Melbourne, Australia		0.09														
The World Bank (2013)	San Diego, US			5.5													
Mo et al. (2014)	Tampa Bay, US			4.8													
Kenway et al. (2008)	Melbourne, Australia			1.13													
Amores et al. (2013)	Tarragona, Spain			1.09													
Kenway et al. (2008)	Glod Coast, Australia			1													
Kenway et al. (2008)	Auckland, New Zealand			0.84													
Lemos et al. (2013)	Aveiro, Portugal			0.84													
Venkatesh and Brattebø (2011)	Oslo, Norway			0.74													
Miller et al. (2013)	India			0.725													
Kenway et al. (2008)	Perth, Australia			0.71													
Kenway et al. (2008)	Adelaide, Australia			0.69													
Friedrich et al. (2009)	Durban, South Africa			0.58													
Kenway et al. (2008)	brisbane, Australia			0.57													
Hardy et al. (2012)	Spain			0.565													
Maas (2009)	Province of Ontario, Canada			0.52													
Lundie et al. (2004)	Sydney, Australia			0.48													
Zappone et al. (2014)	Turin, Italy			0.47													
Racoviceanu et al. (2007)	Toronto, Canada			0.47													
Kenway et al. (2008)	Sydney, Australia			0.45													
Cheng (2002)	Taipei, Taiwan			0.415													
Stillwell et al. (2011)	Texas, US			0.34													
Wang et al. (2016), Lietal. (2016),	China			0.315													

Deferrer	Decier		Total		Abs.	Con.	Abs. Con		W	Τ		Dis.	EU	WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
Maddocksetal.(2015)																	
Lassaux et al. (2007)	Wallon region, Belgium			0.31													
McMahon and Price (2011)	Central Areizona, US				3.3												
Anderson (2006)	Australia				2.4												
Maas (2010) & Maas (2009)	Ontario, Cananda				1.635												
Wang et al. (2012)					1.4												
Plappally and Lienhard (2012), Sala and Serra(2004)	Global level				0.905												
Tan et al. (2015)	Qingdao, China				0.78												
GEI Consultants & NC (2010)	US, Desert				0.637												
GEI Consultants & NC (2010)	US, Northern & Central Coast				0.612												
GEI Consultants & NC (2010)	US, Southland				0.524												
GEI Consultants & NC (2010)	US, Statewide				0.5055												
Rocheta and Peirson (2011)	Australia				0.505												
-					0.48												
Plappally & Lienhard (2012)					0.415												
Plappally & Lienhard (2012)	California, US				0.415												
GEI Consultants & NC (2010)	US, Central Valley				0.3785												
Liu et al. (2013), Gude et al. (2010), WRI(2014)	China				0.37												
Porse et al. (2020)					0.355												
Goldstein and Smith (2002)	US				0.335												
-					0.305												
EPRI (2002)					0.19												
Raluy et al. (2005), Munoz et al. (2010)	Spain					4.07											
Stokes (2009)	Australia					3.3											
Dale (2004) Anderson(2006)	Califonia, US					2.31											
Navigant Consulting (2006)	US, SWP-LA basin					2.199											
Sydney Catchment Authority (2006), SydneyCatchmentAuthority(2010), SydneyWaterCorporation(2012), NSWGovernment(2012)	Sydney, Australia					1.93											
Klein et al. (2005), Cohen et al. (2004), Kneppers (2009), Maas(2009), Kenway et al.(2008), Navigant Consulting,inc.(2006)						1.849											
Plappally and Lienhard (2012)	US					1.8125											

Poforonco	Pagion		Total		Abs.	Con.	Abs. Con		W	Τ		Dis.	EU	WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
Navigant Consulting (2006)	US, CRA-LA Basin					1.622											
Kenway et al. (2008)	Sydney, Australia					0.92											
Navigant Consulting (2006)	US, SWP-Bay area					0.832											
Navigant Consulting (2006)	US, SWP-Central Coast					0.832											
Tan et al. (2015)	Qingdao, China					0.43											
Navigant Consulting (2006)	US, SWP-San Joaquin Valley					0.399											
WBCDS (2009)						0.37											
Klein et al. (2005)	California, US					0.37											
Scott (2009), AGDSEWPC(2010)	Australia					0.21											
Wang (2008)	Anqing, Anhui					0.19											
GEI Consultants & NC (2010)	US, Northern & Central Coast					0.18											
GEI Consultants & NC (2010)	US, Statewide					0.18											
Liu et al. (2013)	China					0.165											
Gao (2012)						0.1495											
EPRI (2002)						0.08											
Scott (2009) AGDSEWPC(2010)	Australia					0.055											
Navigant Consulting (2006)	US, Mokelumne Aqueduct					0.042											
Plappally & Lienhard (2012)						0.035											
Navigant Consulting (2006)	US, Local-Intrabasin					0.032											
Navigant Consulting (2006)	US, Hetch-Bay Area					0											
Los Angeles Department of Water and Power, (2011), Urban Water Management Plan (2010)	Los Angeles, US						2.624										
California Energy Commission (2006)	US, Southern California						2.583										
Klein et al. (2005)	Southern California, US						2.4										
Olsson (2012)	Southern California, US						2.3										
Los Angeles Department of Water and Power, (2011), Urban Water Management Plan (2010)	Los Angeles, US						2.092										
Plappally and Lienhard (2012)	Australia						1.65										
Los Angeles Department of Water and Power	Los Angeles, US						1.622										

Deferrer an	Design		Total		Abs.	Con.	Abs. Con		W	Τ		Dis.	EU	WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
(2011), Urban Water Management Plan (2010)																	
Corominas (2009) Cramwinckel (2009) Eltawil et al. (2008)	Spain						1.05										
Plappally and Lienhard (2012), Sala and Serra(2004)	Global level						0.8701										
California Energy Commission (2006)	US, Northern California						0.555										
-							0.528										
WPRI & WRF (2013)							0.423										
WPRI & WRF (2013)							0.396										
WPRI & WRF (2013)							0.37										
Olsson (2012)	Sweden						0.24										
WaterRF US Study (2007)							0.221										
Hardy et al. (2012)	Spain						0.21										
Yokohama Waterworks Bureau, 2011.	Yokohama, Japan						0.155										
Tokyo Metropolitan Government Bureau of Waterworks (2015)	Tokyo, Japan						0.055										
	Northern California, US						0.04										
Klein et al. (2005)	Northern California, US						0.04										
1996 EPRI report (1996)							0.033										
Sapporo City Waterworks Bureau, 2015.	Sapporo, Japan						0.032										
Shrestha (2015)	Bangkok, Thailand						0.006										
Los Angeles Department of Water and Power, 2011. Urban Water Management Plan 2010	Los Angeles, US						0										
Corominas (2009), Cramwinckel (2009), Eltawil et al. (2008)	Spain							2.39									
EPA (2008)	US							2.1735									
Plappally & Lieinhard (2012)	Canada							0.91									
Plappally & Lieinhard (2012)	Australia							0.6									
Hardy et al. (2012)	Spain							0.57									
Marsh (2008)	Australia							0.35									
Porse et al. (2020)								0.33									
Plappally & Lieinhard (2012)	US							0.325									
Klein et al (2005)	California US							0.215									
Miller et al. (2013)	Delhi India							0.204									
WaterRF US Study (2007)	Donn, mono							0.166									

Reference	Pagion		Total		Abs.	Con.	Abs. Con		W	Τ		Dis.	EU	WWC	WWT	WR	D
Reference	Kegion	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
Olsson (2012)	Sweden							0.12									
Gleik (2009)								0.1153									
Plappally & Lieinhard (2012)	Australia							0.105									
Kenway et al. (2008)	Sydney, Australia							0.1									
Porse et al. (2020)								0.095									
Buckley et al. (2011)	South Africa							0.085									
Klein et al. (2005), Cohen et al. (2004), Kneppers (2009), Maas (2009), Kenway et al. (2008), Navigant Consulting, inc. (2006)								0.085									
Plappally and Lienhard (2012)	US							0.07									
Burton (1996), Gleik (2009)								0.0553									
Shrestha (2015)	Bangkok, Thailand							0.042									
Sapporo City Waterworks Bureau, 2015.	Sapporo, Japan							0.04									
Klein et al. (2005)	Northern California, US							0.03									
Klein et al. (2005)	Southern California, US							0.03									
California Energy Commission (2006)	US, Southern California							0.029									
	Yokohama, Japan							0.029									
Los Angeles Department of Water and Power, 2011. Urban Water Management Plan 2010 The City of San Diego (2015)	San Diego, US							0.029									
California Energy Commission (2006)	US, Northern California							0.028									
Los Angeles Department of Water and Power, 2011. Urban Water Management Plan 2010	Los Angeles, US							0.027									
Burton (1996), Gleik (2009)								0.0253									
1996 EPRI report (10996)								0.022									
Burton (1996) Gleik (2009)								0.0052									
Goldstein and Smith (2002)	US								0.3815								
-											142.5						
IDA (2012)											132						
NRC (2008)											72.705						
NRC (2008) Younos and Tulou(2005)											47.555						
NRC (2008)											11.875						

Deference	Decise		Total		Abs.	Con.	Abs. Con		W	ľΤ		Dis. EU WWC _d Dis EU WWC		WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
Younos and Tulou(2005)																	
IDA(2012)											9						
IDA(2012)											7.4						
Plappally and Lienhard (2012)	Australia										5.9						
Liu et al. (2013)	China										5.9						
WBCDS (2009)											5.54						
Plappally and Lienhard (2012) Sala and Serra (2004) Medeazza (2005)	Global level										5.45						
Siddiqi & Anadon (2011)											4.75						
Younos and Tulou (2005)											4.7						
Plappally and Lienhard (2012)	US										4.035						
Tan et al. (2015)											4						
Rocheta and Peirson (2011)	Australia										4						
Xie (2009)											3.5						
Sydney Catchment Authority (2006), Sydney Catchment Authority (2010), Sydney Water Corporation (2012), NSW Government (2012)	Sydney, Australia										3.38						
EPRI & WRF (2013)											3.17						
EPRI & WRF (2013)											3.17						
EPRI & WRF (2013)											3.17						
EPRI & WRF (2013)											3.17						
EPRI & WRF (2013)											3.17						
EPRI & WRF (2013)											3.17						
EPRI & WRF (2013)											3.17						
Stokes & Horvath (2006)											1.75						
EPRI & WRF (2013)											1.585						
EPRI & WRF (2013)											1.574						
EPRI & WRF (2013)											1.572						
EPRI & WRF (2013)											1.572						
Tan et al. (2015)											1.4						
Porse et al. (2020)											1.225						
EPRI & WRF (2013)											1.197						
EPRI & WRF (2013)											1.197						
NRC (2008) Younos and Tulou (2005)											1.1						
NRC (2008)											0.92						
Cooley et al. (2006)											0.79						

Reference Region			Total		Abs.	Con.	Abs. Con		W	Τ	-	Dis.	EU	WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
EPRI & WRF (2013)											0.78						
GEI Consultants & NC (2010)	US, Southland										0.428						
GEI Consultants & NC (2010)	US, Statewide										0.428						
GEI Consultants. (2009)											0.415						
GEI Consultants & NC (2010)	US, Statewide										0.0665						
GEI Consultants & NC (2010)	US, Southland										0.0145						
Stokes and Horvath (2009)	California, US											4.9					
Lam et al. (2016)	Brisbane, Austrialia											2.11					
	Germanny											1.71					
Kenway et al. (2008)	Australia, Sydney											0.92					
Kenway et al. (2008)	Australia											0.79					
Friedrich (2002)	Toronto, Canada											0.68					
Klein et al. (2005), Cohen et al. (2004), Kneppers (2009), Maas (2009), Kenway et al. (2008), Navigant Consulting, inc. (2006)												0.5715					
Rothausen and Conway (2011), Olsson (2015)	UK											0.56					
Kenway et al. (2008)	US											0.51					
Olsson (2015)	Netherlands											0.47					
Olsson (2015)	Sweden											0.46					
Venkatesh and Brattebø (2011)	Oslo, Norway											0.4					
City of Toronto (2015)	Toronto, Canada											0.341					
Los Angeles Department of Water and Power, 2011. Urban Water Management Plan 2010 The City of San Diego (2015)	San Diego, US											0.336					
California Energy Commission (2006)	US, Northern California											0.333					
California Energy Commission (2006)	US, Southern California											0.323					
Klein et al. (2005)	Northern California, US											0.32					
Klein et al. (2005)	Southern California, US											0.32					
1996 EPRI report (1996)												0.314					
Liu et al. (2013)	China											0.3					
Miller et al. (2013)	India											0.3					
Smith et al. (2015)	China											0.29					
Cohen et al. (2004)	US, San Diego											0.27					
Klein et al. (2005)	California, US											0.26					
Plappally and Lienhard (2012)	US											0.25					

Poforongo	Pagian		Total		Abs.	Con.	Abs. Con		W	Τ		Dis. .d Dis 0.244	EU	WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
Navigant Consulting (2014)	San Francisco, US											0.244					
Loubet et al. (2014)												0.24					
Hardy et al. (2012)	Spain											0.21					
Paul, R., 2014.	Bangalore, India											0.21					
Buckley et al. (2011)	South Africa											0.2					
Cheng (2002)	Taiwan, Taipei											0.17					
Corominas (2009), Cramwinckel (2009), Eltawil et al. (2008)	Spain											0.17					
Yokohama Waterworks Bureau, 2011.	Yokohama, Japan											0.169					
Shrestha (2015)	Bangkok, Thailand											0.169					
Los Angeles Department of Water and Power, 2011. Urban Water Management Plan 2010	Los Angeles, US											0.159					
-	UAE, Masdar											0.14					
Venkatesh et al. (2014)	Oslo, Norway											0.135					
Western Resource Advocates (2009)	Denver, US											0.114					
Kenway et al. (2008)	Australia, Melbourne											0.11					
Iowa Study (2002)	US, Iowa											0.102					
Olsson (2012)	Sweden											0.1					
Loubet et al. (2014)	Copenhagen, Denmark											0.1					
Buckley et al. (2011)	South Africa											0.1					
WaterRF US Study (2007)												0.07					
Sapporo City Waterworks Bureau (2015)	Sapporo, Japan											0.058					
City West Water Corporation (2014)	Melbourne, Australia											0.03					
Miller et al. (2013)	Delhi, India											0.017					
Danish Water and Waste Water Association (2014)	Copenhagen, Denmark											0.01					
Sattenspiel and Wilson (2009)	US												208.38				
the end-use intensity corresponds to the AHA demand scenario	UAE, Masdar												3.26				
Cohen et al. (2004)													3.162				
Cohen et al. (2004)	US, San Diego												3.16				
Klein et al. (2005)	Northern California, US													0.71			
Klein et al. (2005)	Southern California, US													0.71			

Poforonco	Pagion		Total		Abs.	Con.	Abs. Con		W	Τ		Dis.	EU	WWC	WWT	WR	D
Reference	Region	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
Buckley et al. (2011)	South Africa													0.14			
Kneppers (2009)	New Zealand													0.115			
GEI Consultants & NC (2010)	US, Southland													0.0605			
GEI Consultants & NC (2010)	US, Statewide													0.0605			
Maas (2009)	Canada													0.06			
CEC (2006) CEI & Navigant Consulting (2009)	US													0.04			
Navigant Consulting (2006)														0.037			
GEI Consultants & NC (2010)	US, Northern & Central Coast													0.037			
CEC (2006) CEI & Navigant Consulting (2009)	California, US													0.0215			
Kenway et al. (2008)	Australia, Melbourne														1.14		
GEI Consultants & NC (2010)	US, Northern & Central Coast														1.0105		
Marsh (2008)	Australia														0.95		
Plappally and Lienhard (2012) Sala and Serra (2004)	Global level														0.751		
Klein et al. (2005)	California, US														0.75		
WBCDS (2009)															0.745		
GEI Consultants & NC (2010)	US, Statewide														0.742		
EPRI & WRF (2013)															0.711		
EPRI & WRF (2013)															0.549		
Hardy et al. (2012)	Spain														0.53		
Corominas (2009) Cramwinckel (2009) Eltawil et al. (2008)	Spain														0.51		
Kenway et al. (2008)	Australia, Sydney														0.5		
Goldstein and Smith (2002)	US														0.4785		
Cohen et al. (2004)															0.462		
Cohen et al. (2004)	US, San Diego														0.46		
Buckley et al. (2011)	South Africa														0.44		
the end-use intensity corresponds to the AHA demand scenario	UAE, Masdar														0.41		
Cheng (2002)	Taiwan, Taipei														0.41		
GEI Consultants & NC (2010)	US, Northern & Central Coast														0.406		
Kenway et al. (2008)	Sydney, Australia														0.38		
EPRI (2002)															0.375		
GEI Consultants & NC (2010)	US, Southland														0.318		

Reference Region			Total		Abs.	Con.	Abs. Con		W	T		Dis.	EU	WWC	WWT	WR	D
Reference	Kegion	Total	TDWS	TWWS	Abs_g	Con_s	Abs. Con	WT_all	WT_s	WT_g	WT_d	Dis	EU	WWC	WWT	WR	D
GEI Consultants & NC (2010)	US, Desert														0.3045		
-	China														0.3		
Yang et al. (2008)															0.29		
GEI Consultants & NC (2010)	US, Statewide														0.2785		
Liu et al. (2013), Gude et al. (2010), WRI (2014)	China														0.26		
Gao (2012)															0.25		
GEI Consultants & NC (2010)	US, Southland														0.216		
Li et al. (2015)	Shenzhen, Guangdong														0.2		
EPRI & WRF (2013)															0.198		
Cohen et al. (2004) Dimitriadis (2005)																3.162	
Plappally and Lienhard (2012) Sala and Serra (2004) Schroeder (2012)	Global level															2.4	
WBCDS (2009)																1.75	
Lam et al. (2016) Poussade et al. (2011)	Brisbane, Austrialia															1.14	
Gao (2012)																0.85	
Tan et al. (2015)	Qingdao, China															0.82	
Liu et al. (2013)	China															0.82	
GEI Consultants & NC (2010)	US, Southland															0.603	
-	US, Statewide															0.592	
Hardy et al. (2012)	Spain															0.59	
Corominas (2009) Cramwinckel (2009) Eltawil et al. (2008)	Spain															0.585	
Plappally and Lienhard (2012) Sala and Serra (2004) Schroeder (2012)	Global level															0.405	
Klein et al. (2005)	California, US															0.215	
-																	0.106
Klein et al. (2005)	California, US																0.055
Corominas (2009) Cramwinckel (2009) Eltawil et al. (2008)	Spain																0.055
Klein et al. (2005), Cohen et al. (2004), Kneppers (2009), Maas (2009) Kenway et al. (2008), Navigant Consulting.inc.(2006)																	0.053
Hardy et al. (2012)	Spain																0.05
Navigant Consulting (2006)																	0

2.5.2 국가 및 도시별 에너지 인텐시티

가. 스페인(Hardy 등, 2010)

스페인의 도시 물순환 시스템에서 각 공정별 에너지 인텐시티는 [표 12]에서와 같이 각 단계별로 특정한 에너지 인텐시티를 가지고 있음을 알 수 있었다. 단 이 분석에서는 용 수 사용(end-use) 및 농업에서 사용되는 연료는 고려되지 않았다.

정수처리 공정은 도시 물순환 시스템의 단계 중 중 에너지 인텐시티가 가장 큰 범위를 가졌다. 그 이유는 스페인에서 수처리가 전적으로 원수의 수질 및 수원에 영향을 받기 때문이다. 또한 스페인에서도 수자원이 부족한 대부분의 나라들처럼 담수화는 대체 수원 으로 고려되고 운영되고 있다. 담수화 시설의 원수의 염분농도는 기수부터 바닷물까지 다양한 범위를 가지며, 그에 따른 적합한 수처리 기술을 요구하며, 이에 따라 정수처리 공정의 에너지 인텐시티의 범위는 넓게 나타났다.

많은 양의 하수를 집수하고 더 높은 하수 기준 수질에 도달하려는 유럽의 노력에 따라, 고도 처리 시설은 스페인에서 많이 도입되었으며, 이는 하수처리 공정에서 에너지 인텐 시티의 증가를 유발하였다. 용수를 재활용하는 시설(그러나 먹는 물에 대한 품질 기준을 충족하지 않음)은 스페인에서 0.13 kWh/m³로 추산되는 추가 에너지 비용이 드는 것으로 나타났다.

Store	Energy i	intensity range (l	kWh/m ³)
Stage	Min	Mean	Max
Water extraction and conveyance	0	0.21	2.10
Water treatment	0.11	0.57	4.67
Water distribution	0.12	0.21	0.22
Wastewater treatment	0.41	0.53	0.61
Recycled water treatment and conveyance	0.32	0.59	0.85
Waste water discharge	0	0.05	0.11

표 12. 도시 물순환 시스템 공정별 에너지 인텐시티 범위

출처: Hardy 등(2012)

나. 미국(EPRI & WRF, 2013)

EPRI & WRF는 미국에서 상수 공급 과정에서 에너지 인텐시티를 조사하였으며, 그 결과 는 [표 13]과 [표 14]와 같다.

		Total	Energy	intensity (kV	Vh/m ³)*	
Reference Source	Year	Intensity	Raw Water	Treatmen	Distributi	Comment
		(kWh/m ³)	Pumping	t	on	
1996 EPRI Report	1996	0.370	0.033	0.022	0.314	Initial report
Massachusetts Dept of	0000	0.000		NI / A		Estimate of MA
Environmental Protection	2008	0.396		N/A		plants only
	0000	0.500		NT / X		Survey of WI
Energy Center of Wisconsin	2003	0.502		N/A		plants only
WaterRF US Study	2007	0.502	0.221	0.166	0.070	
U.S. Geological Survey	2000	0.511		N/A		
Lawra Ctudy	2002	0 720	0.0	0.0.1	0.100	Survey of IA
Iowa Study	2002	0.732	0.221		0.102	plants only
California En anna Commission						Included
	2006	0.925	0.555	0.028	0.333	embedded energy
(Northern Calinofrnia)						not metered
						Included
California Energy Commission	2006	2.935	2.583	0.029	0.323	embedded energy
(Southern Calinofrnia)						not metered
Average (with CEC studies)		0.859	0.344	0.223	0.292	
Average (without CEC studies)		0.503	0.090	0.211	0.206	

표 13. 미국에서 상수 공급 과정에서 에너지 인텐시티

* 공급과정에서 물손실이 발생되지 않았다고 가정

출처: EPRI & WRF (2013)

표 14. 미국에서 상수 공급 과정에서 Community와 Non Community에 따른 에너지 인	텐시티
--	-----

System Type	Source	kWh/m ³	Estimated Population Served	gpcd	kWh/day			
	Surface	0.423	199,827,000	171	54,672,700			
Community	Groundwater	0.555	88,370,000	171	31,733,700			
	Desalination	3.170	9,416,000	171	19,321,500			
Non	Surface	0.423	5,354,000	171	1,464,850			
Community	Groundwater	0.555	855,000	171	307,000			
r	Гotal per day		107,500,000					
Total per year Percer	ntage of total U.S. el	ectricity used	39.2 TWh					
	in 2011		1%					

출처: EPRI & WRF (2013)

다. 5개 도시(Siddiqi & Weck, 2013)

[표 15]에서와 같이 5개 도시의 도시 물순환 과정에 따른 에너지 인텐시티를 조사하였으며, 마 스다르 시의 물 공급 및 처리와 관련된 에너지 인텐시티는 높은 값(4 kWh/m³)을 나타났다.

표 15. 도시별 도시 물순환 시스템 공정별 에너지 인텐시티

Segment intensity (kWhe/m ³)	Masdar	San Diego	Sydney	Melbourne	Taipei
Supply and treatment	4	1.70	0.03	0.01	0.21
Distribution	0.14	0.27	0.92	0.11	0.17
Urban indoor end use	3.26	3.16			
Wastewater treatment	0.41	0.46	0.5	1.14	0.41

출처: Siddiqi & Weck (2013)

라. 미국, 캘리포니아 #1 (Navigant Consulting, 2006)

Navigant Consulting(2006)에서 조사한 미국 캘리포니아 지역의 도시 물순환 시스템의 에 너지 인텐시티 매트릭스는 [표 16]와 같다.

	Wa	ter		Wastewater					
Supply	Conveyance	Treatment	Distribution	Collection	Treatment	Disposal			
Surface Water (0)	SWP·L.A. Basin (2.199)	EPRI Avg. (0.026)	EPRI Avg. (0.317)	Avg 0.037 (incl. in Treatment)	Tricling Filter (0.247)	Gravity Discharge (0)			
Groundwater (0.001 mg/AF)	SWP·Bay Area (0.832)		Flat Topography (TBD)		Activated Sludge (0.349)	Pump Discharge (0.106)			
Ocean Desalination (3.646)	SWP·Central Coast (0.832)		Moderate Topography (TBD)		Advanced (0.407)				
Brackish Desal (0.328-1.379)	SWP-San Joaquin Valley (0.399)		Hilly Topography (TBD)		Advanced w/ Nitrification (0.505)				
Recycled Water (0)	CRA·L.A. Basin (1.622)		Recycled Water (0.317-0.793)						
	Hetch Hetchy – Bay Area (0)								
	Mokelumne Aqueduct (0.042)								
	Local – Intrabasin (0.032)								

표 16. 도시 물순환 시스템 공정별 에너지 인텐시티 [kWh/m³]

출처: NC (2006); GEI Consultants & NC (2010)

마. 미국 캘리포니아 #2 (GEI Consultants & Navigant Consulting, 2010)

GEI Consultants & Navigant Consulting (2010)은 캘리포니아에서 관측된 평균 에너지 인 텐시티의 범위를 도시 물순환 시스템 단계 및 지리적 지역별로 요약하였다. 이러한 범위 는 모든 연구 기관에 대한 상세한 월간 에너지 인텐시티를 분석하여, 여름(5월~10월)과 겨울(11월~4월) 기간의 평균이 계산되었으며, 그 결과는 [표 17]에서 나타난 바와 같다.

Process	Functional Component	Primary Energy Drivers	Energy Intensity	Range of Energy Intensities Observed in Study 2 (kWh/m ³)				
			From Prior Studies	Northern & Central Coast	Central Valley	Southland	Desert	Statewide
Supply	Local Surface Water	Pumping		0.040-0.320				0.040-0.320
	Groundwater	Pumping	0.142-0.600	0.452-0.772	0.239-0.518	0.374-0.674	0.573-0.701	0.239-0.772
	Brackish Desalination	Treatment	0.328-1.379			0.374-0.482		0.374-0.482
	Recycled Water	Incremental Treatment	0.079-0.317	0.283-0.572		0.305-0.901		0.283-0.901
	Seawater Desalination	Reverse Osmosis	3.464					
Water Treatment	Coagulation +		0.026-0.029	0.035-0.121		0.012-0.017		0.012-0.121
	flocculation + filtration							
	Microfiltration	Removal of		0.058-0.190				0.058-0.190
		Suspended						
		Solids						
	Removal of Salts, etc.	Reverse Osmosis						
	Disinfection	Ozone		0.044-0.072				0.044-0.072
		Ultraviolet						
Water Distribution	Booster Pumps	Flat Terrain	0.317-0.793		0.013-0.016			0.013-0.016
		Moderate		0.135-0.253		0 012-0 237		0.012-0.253
		Terrain				0.012 0.237		0.012 0.200
		Hilly Terrain		0.100-0.295		0.333-0.416		0.100-0.416
	Pressure System			0 470-0 679		0 095-0 099		0.095-0.679
	Pumps			0.170 0.075		0.000 0.000		5.000 0.070
Wastewater Treatment	Wastewater Collection		0.037	0.001-0.073		0.001-0.120		0.001-0.120
	Pumps							
	Primary +Secondary		0.252-0.362	0.384-0.428		0.129-0.303		0.129-0.428
	Primary + Secondary		0 /07	0 824-1 197		0 287-0 349	0 298-0 311	0 287-1 197
	+ Tertiary		0.107	0.024 1.107		0.207 0.010	0.230 0.311	
	Microfiltration	High Pressure				0.210-0.221		0.210-0.221
	(incremental)	Pumping				0.210-0.221		0.210 0.221
	Reverse Osmosis	High Pressure				0 417_0 421		0.417_0.421
	(incremental)	Pumping				0.417-0.421		0.417-0.421
	UV (Incremental)					0.081-0.087		0.081-0.087

표 17. 시스템 및 공정별 에너지 인텐시티 관측값

출처: GEI Consultants & NC (2010)
바. 전 세계 도시들 #1 (Wang, 2015)

Wang (2015)의 문헌 검토를 통한 도시 물순환 시스템의 공정 및 정수처리와 하수 처리의 세부 공정에 따른 에너지 인텐시티의 범위는 [표 18]에 나타난 바와 같다.

표 18. 도시 물순환 시스템의 공정 및 정수처리와 하수 처리의 세부 공정에 따른 에너지 인텐시티의 범위 [kWh/m³]

Item	Energy (kWh	intensity 1/m3)	Reference	
	Low	High		
Conveyance	0.000	3.698	Klein et al. 2005: Cohen et al.	
Pumping	0.020	0.150	2004: Kneppers 2009: Maas	
Treatment	0.026	4.227	2009; Kenway et al. 2008;	
Distribution	0.170	0.973	Navigant Consulting, inc. 2006	
Water supply (total)	0.093	1.450	NRDC 2004	
Alum	0.000	0.000	Klein et al. 2005	
Polymer	0.001	0.001	Klein et al. 2005	
Rapid mix	0.008	0.008	Klein et al. 2005	
Flocculation basins	0.002	0.002	Klein et al. 2005	
Sedimentation tanks	0.002	0.002	Klein et al. 2005	
Lime	0.000	0.000	Klein et al. 2005	
Filters	0.000	0.000	Klein et al. 2005	
Chlorine	0.000	0.000	Klein et al. 2005	
Clear well storage	0.000	0.000	Klein et al. 2005	
Filter backwash pump	0.003	0.003	Klein et al. 2005	
Filter surface wash pump	0.002	0.002	Klein et al. 2005	
Decanted washwater to rapid mix	0.005	0.005	Klein et al. 2005	
Sludge pump	0.001	0.001	Klein et al. 2005	
Wastewater collection and treatment	0.100	1.215		
Pumping	0.040	0.190		
Trickling filter	0.105	0.470	Klein et al. 2005; NRDC 2004;	
Activated sludge treatment	0.182	0.608	Kneppers 2009; Maas 2009; Keppers et al. 2008; Newigent	
Advanced treatment	0.227	0.701	Congulting Ing. 2006; Chong	
Advanced treatment with nitrification	0.324	0.795	Consulting, Inc. 2000, Cheng	
Wastewater discharge	0.000	0.106		
Wastewater treatment (total)	0.462	0.462	Cohen et al. 2004	
Chemicals for wastewater treatment	0.056	0.056	Klein et al. 2005	
Chlorine for wastewater treatment	0.010	0.010	Klein et al. 2005	
Alum for wastewater	0.060	0.060	Klein et al. 2005	
Ferrous & ferric for wastewater	0.030	0.030	Klein et al. 2005	
End use	3.162	3.162	Cohen et al. 2004	
Residential end use				
Toilets and leaks	0	0	Cohen et al. 2004	
Dishwashers	22,051.43	22,051.43	Cohen et al. 2004	
Clothes washers	9,444.82	9,444.82	Cohen et al. 2004	
Showers, faucets, and bathtubs	5,431.79	5,431.79	Cohen et al. 2004	

Item	Energy (kWh	intensity n/m3)	Reference
	Low	High	
Landscapes irrigation	0	0	Cohen et al. 2004
Commercial, industrial, and institutional			Cohen et al. 2004
Kitchen dishwashers	22,051.43	22,051.43	Cohen et al. 2004
Prerinse nozzles	5,431.79	5,431.79	Cohen et al. 2004
Other kitchen use	na	na	Cohen et al. 2004
Lundries	9,444.82	9,444.82	Cohen et al. 2004
On-site wastewater treatment	648.57	648.57	Cohen et al. 2004
Water-cooled chillers	54,885.36	54,885.36	Cohen et al. 2004
Single pass cooling	0	0	Cohen et al. 2004
Landscape irrigation	0	0	Cohen et al. 2004
Other heated water	5,431.79	5,431.79	Cohen et al. 2004
Other unheated water			Cohen et al. 2004
Hot water (electirc)	73,000	73,000	Cohen et al. 2004
Hot water (natural gas)	103,000	103,000	Cohen et al. 2004
Total estimated residential end uses	3,161.79	3,161.79	Cohen et al. 2004
Kitchen dishwashers	22,051.43	22,051.43	Cohen et al. 2004
Prerinse nozzles	5,431.79	5,431.79	Cohen et al. 2004
Other kitchen use	na	na	Cohen et al. 2004
Laundries	9,444.82	9,444.82	Cohen et al. 2004
On-site wastewater treatment	648.57	648.57	Cohen et al. 2004
Water-cooled chillers	54,885.36	54,885.36	Cohen et al. 2004
Single pass cooling	0	0	Cohen et al. 2004
Landscape irrigation	0	0	Cohen et al. 2004
Other heated water	5,431.79	5,431.79	Cohen et al. 2004
Other unheated water	na	na	Cohen et al. 2004
Wastewater reclimation and distribution	105.67	1,000	Cohen et al. 2004; Dimitriadis 2005
Distillation	23,000	58,333.33	Gleick (1993) in Gleick (1994), USDOE 2003
Freezing	16,666.67	30,555.56	Gleick (1993) in Gleick (1994)
Reverse osmosis (seawater)	3,000	25,000	Gleick (1993) in Gleick (1994), USDOE 2003, Dimitriadis 2005
Reverse osmosis (brackish water)	700	3,888.89	Gleick (1993) in Gleick (1994), USDOE 2003, Dimitriadis 2005
Electrodialysis (seawater)	19,444.44	41,666.67	Gleick (1993) in Gleick (1994), USDOE 2003
Electrodialysis (brackish water)	2,777.78	11,111.11	Gleick (1993) in Gleick (1994), USDOE 2003

출처: Wang (2015)

사. 전 세계 도시들 #2 (Lee 등, 2017)

Lee 등(2017)은 4개국 20개 지역의 물 분야의 에너지 인텐시티와 온실가스 인텐시티를 비교하였으며, 그 결과는 [표 19]와 [그림 28]에 나타난 바와 같다.

Desire (less	Water risk indicators		Water sup	Water supply system		r treatment tem	
tions	Baseline water stress (BWS)	Return flow ratio (RFR)	Energy intensity (kWh/m³)	GHG potential (g CO ₂ eq/m ³)	Energy intensity (kWh/m³)	GHG potential (g CO ₂ eq/m³)	Ref.
Africa							
Durban, South Africa	High (40-80%)	High (40-80%)	0.19	481	0.58	353	61
Australia							
Adelaide,	Extremely	Extremely	1 92	1884	0.69	674	18
Australia	high (> 80%)	high (> 80%)	1.52	1004	0.05	074	10
Audkland, New Zealand	Low to medium (10-20%)	Low to medium (10-20%)	0.21	54	0.84	219	18
Brisbane, Australia	Medium to high (20-40%)	Medium to high (20-40%)	0.68	586	0.57	499	18
Gold Coast, Australia	Low to medium (10-20%)	Low (< 10%)	0.21	206	1.00	991	18
Melbourne, Australia	Extremely high (> 80%)	High (40-80%)	0.09	69	1.13	835	18
Perth, Australia	Medium to high (20–40%)	Medium to high (20-40%)	0.98	1030	0.71	748	18
Sydney, Australia	Extremely high (> 80%)	Extremely high (> 80%)	1.10	1044	0.45	423	18
Sydney, Australia	Extremely high (> 80%)	Extremely high (> 80%)	0.34	406-452	0.48	672-719	11
Asia							
China	-	-	0.43-0.67	-	0.13-0.50	-	30,63,67
India	-	-	0.17-0.71	-	0.05-1.40	-	68
Japan	-	-	-		0.30-2.07		69
Qingdao, China	Extremely high (> 80%)	Extremely high (> 80%)	0.73-1.08	-	-	-	53
Taipei, Taiwan	High (40-80%)	Medium to high (20-40%)	0.26-0.51	-	0.39-0.44	-	49
Lurope		Madiume to					
Aveiro, Portugal	High (40-80%)	Medium to high (20-40%)	0.79	766-898	0.84	659-851	47
Oslo, Norway	Medium to high (20–40%)	Low to medium (10–20%)	0.39-0.44	70-80	0.67-0.81	55-62	31

표 19. 도시 급수 인프라의 에너지 인텐시티와 온실가스(GHG) 잠재량

Decier (less	Water risk	indicators	Water sup	ply system	Wastewater sys		
tions	Baseline water stress (BWS)	Return flow ratio (RFR)	Energy intensity (kWh/m³)	GHG potential (g CO ₂ eq/m³)	Energy intensity (kWh/m³)	GHG potential (g CO ₂ eq/m³)	Ref.
Spain	High (40-80%)	Medium to high (20–40%)	0.23-6.99	-	0.41-0.72	-	Hady et al. (2012)
Tarragona, Spain	High (40-80%)	Medium to high (20–40%)	0.85	736	1.09	128	Amores et al. (2013)
Turin, Italy	Medium to high (20–40%)	Low to medium (10–20%)	0.85	323	0.47	126	Zappone et al. (2014)
Walloon region, Belgium	High (40-80%)	High (40-80%)	0.39	-	0.31	-	Renzoni & Germain (2007)
North America							
Tampa Bay, Florida, USA	High (40-80%)	Medium to high (20-40%)	3.00-3.60	1585-1911	4.50-5.10	2457-2739	Mo et al. (2014)
Texas, USA	Medium to high (20–40%)	High (40-80%)	0.38-0.48	-	0.32-0.36	-	Stillwell et al. (2011)
Taranto, Canada	Low (< 10%)	Low to medium (10–20%)	0.64-0.73	111-128	0.47	22	Racovicean u et al. (2007)
Province of Ontario, Canada	Low (< 10%)	Low (< 10%)	0.68-1.11	184-300	0.34-0.70	92-189	Maas (2009)
San Diego, California, USA	Extremely high (> 80%)	Extremely high (> 80%)	6.20-16.4	1855-4903	3.50-7.50	1041-2249	Mo & Zimmerman (2014)

출처: Lee 등(2017)

그림 28. 도시 물순환 시스템 공정별 에너지 강도 범위

출처: Lee 등(2017)

아. 문헌 리뷰 #1 (Porse 등, 2020)

Porse 등(2020)이 검토한 에너지 인텐시티의 문헌 검토 결과는 [표 20]에 나타난 바와 같다.

표	20.	적용	기술	및	수원에	따른	에너지	인텐시티
---	-----	----	----	---	-----	----	-----	------

Technology (Weter Source	Electricity Inte	nsity (kWh/m³)
rechnology/ water Source	Low	High
Groundwater		
Pumping	0.21	0.50
Water and wastewater treatment pr	ocesses	
Conventional water treatment	0.08	0.11
Disinfection (Chlorine or ozone)	0.02	0.04
Membrane-based water treatment	0.26	0.40
Secondary treatment without nutrient removal	0.28	0.36
Tertiary treatment (nutrient removal and filtration)	0.42	0.51
Membrane bioreactor (MBR)	0.60	2.29
Brackish water desalination	0.81	1.64
Advanced water treatment	0.86	1.05
Imported Water		
Colorado river aqueduct imported water	1.62	1.94
State water project imported water	2.09 (2.52)	2.62 (3.66)
Los Angeles aqueduct imported water	-1.82	-1.82
Distribution (within a retailer system)	Ranges fr	om 0-1.13
Ocean desalination	2.51	3.89

출처: Porse 등(2020)

자. 한국 (Lee & Kim, 2021)

Lee & Kim(2021)은 2012년과 2017년의 도시 물순환 시스템의 각 단계별 남한 17개 지역 의 물 및 에너지 소비량을 집계하고 에너지 인텐시티를 추정하여 지역 간 비교하였으며, 그 결과는 [표 21]과 [표 22]에 나타난바와 같다. 또한, 물과 관련된 에너지 소비에 대한 다양한 요인의 영향을 식별하기 위해 일련의 회귀 분석을 수행했다. 그러나 해당 문헌에 서 조사된 에너지 인텐시티의 값은 다른 문헌에서 조사된 값에 비해 매우 높은 값을 나 타내어서 본 연구에서는 해당 값을 고려하지 않았다.

표 21. 2017년 도시 물순환 시스템 공정별 에너지 인텐시티 벤치마크 지역

	The most energy-efficient The least energy-efficient				The region with the largest		
	region (kWh/m³)	region (i	kWh/m³)	increase	(kWh/m ³)	
Withdrawal	Gwangju	7	Gyeongbuk	1290	Gyeongbuk	1084	
Purification	Daejoen	40	Gyeongbuk	850	Gyeongbuk	683	
Distribution	Gwangju	10	Busan	554	Daejeon	228	
Waste treatment	Gwangju	265	Gangwon	2185	Gangwon	1700	

출처: Lee & Kim (2021)

Region	Year	Withdrawal	Purification	Distribution	Treatment	Total
Seoul	2012	125	185	81	251	662
	2017	118	224	63	298	716
Busan	2012	232	136	226	258	852
	2017	265	47	554	284	1150
Daegu	2012	0	319	64	317	806
	2017	0	330	37	334	779
Incheon	2012	127	192	34	347	845
	2017	100	139	38	406	797
Gwangju	2012	256	23	5	210	554
	2017	7	24	10	265	428
Daejeon	2012	198	33	31	279	541
	2017	211	40	259	318	828
Ulsan	2012	0	381	0	332	911
	2017	0.1	812	0	400	1460
Sejong	2012	166	229	106	3	437
	2017	0	0	118	852	987
Gyeonggi	2012	291	276	58	388	999
	2017	365	196	85	454	981
Gangwon	2012	301	178	51	485	1008
	2017	525	215	75	2185	2692
Chungbuk	2012	236	195	78	455	929
	2017	263	256	91	564	1021
Chungnam	2012	288	228	62	581	1108
	2017	333	252	66	1010	1445
Jeonbuk	2012	146	208	26	343	667
	2017	210	246	70	397	733
Jeonnam	2012	270	144	42	589	929
	2017	291	137	234	632	1271
Gyeongbuk	2012	206	212	117	408	975
	2017	1290	850	110	1675	3416
Gyeongnam	2012	198	193	94	457	942
	2017	213	195	166	1502	2036
Jeju	2012	894	718	147	393	2152
	2017	534	257	150	491	1432

표 22. 지역별(2012년, 2017년) 도시 물 순환환 공정별 에너지 인텐시티 [kWh/m³]

출처: Lee & Kim (2021)

이 연구는 도시 물순환 시스템의 단계별 에너지 인텐시티 뿐만 아니라 총 에너지 인텐시 티에서도 [그림 29]에서와 같이 지역적 차이를 발견할 수 있었다. 충북은 2017년 총 에너 지 인텐시티가 가장 높았고(3.926 MWh/m³), 강원(2.726 MWh/m³), 경남(2.076 MWh/m³) 순이었다. 광주가 총에너지 인텐시티(0.305 MWh/m³)가 가장 낮았고 인천(0.683 MWh/m³)과 대구(0.702 MWh/m³)가 그 뒤를 이었다. 2017년 총 에너지 인텐시티가 1.000 MWh/m³ 이상인 지역은 17개 지역 가운데 절반이 넘었다.

그림 29. 2012~2017년 지역별 물 분야 에너지 인텐시티 변화 출처: Lee & Kim (2021)

도시 물순환 시스템 단계별 에너지 인텐시티를 비교해 보면 [그림 30]에서와 같이 하수처 리 단계는 부산·울산·제주를 제외하면 전체 에너지 인텐시티에서 차지하는 비중이 가 장 컸다. 2017년 하수처리 단계에서 에너지 인텐시티가 가장 높았던 지역은 경북(3.926MW h/m³)이었고 강원(2.726 MWh/m³)이 그 뒤를 이었다. 광주는 2017년 하수처리단계 에너지 인 텐시티가 가장 낮았고(0.265 MWh/m³) 부산(0.284 MWh)MWh/m³)과 서울(0.298)MWh/m³)이 그 뒤를 이었다.

그림 30. 2017년 도시 물순환 시스템 단계별 17개 지역의 에너지 강도 출처: Lee & Kim (2021)

전체적으로 2012년부터 2017년까지 3개 지역(인천, 광주, 제주)을 제외한 모든 지역에서 에너지 소비량과 에너지 인텐시티가 증가하였다. 경북은 하수처리 단계(11.267 WWh/m³)에 서 큰 폭으로 상승해 17개 지역 중 총에너지 인텐시티 상승폭(2.984 WWh/m³)이 가장 컸다. 강원도는 2012년부터 2017년까지 총 에너지 인텐시티 증가율(11.711 MWh/m³)이 두 번째 로 컸으며, 강원의 하수처리 에너지 강도 증가율(11.700 MWh/m³)은 2012년부터 2017년까 지 4배 이상 증가했다. 반면 같은 기간 인천(0.016 MWh/m³), 광주(0.189 WWh/m³), 제주 (0.720 MWh/m³)에서는 에너지 인텐시티 감소가 관측됐다.

차. 노르웨이, 오슬로 (Venkatesh & Brattebø, 2011)

Venkatesh & Brattebø(2011)는 경험적 데이터와 문헌 검토를 바탕으로 노르웨이 오슬로 의 상수와 하수 시스템의 운영 및 유지 단계에 대한 1인당 에너지 소비를 분석하였다. 그 결과 오슬로에서 상수 시스템에서 에너지 인텐시티는 평균 0.4 kWh/m³인 반면 하수 시스템에서는 0.8 kWh/m³가 필요하다는 것을 알 수 있었다.

카. 중국 (Chu, 2017)

Chu (2017)는 중국 지역에서 지표수, 지하수, 담수화 물 재이용 및 광역 용수 사용과 같은 수원의 종류에 따른 에너지 인텐시티를 [표 23] 과 같이 조사 및 정리하였다. 또한 상수 시스템과 하수 시스템의 에너지 인텐시티도 제시하였다.

					Inte	ernational Coopera	tion	
Unit: k	Wh/m ³	Intensity	Source	Scope	EPRI 2002	WBCDS 2009	Plappally & Lienhard, 2012	Value Used
		0.19	Wang 2008	Anqing,Anhui				
	Surface Water	0.009-0.023	Gao 2012	Agriculture	0.09	0.27	0.02-0.05	0.10
	Surface water	0.069-0.23	Gao 2012	Urban water	0.06	0.37	(pumping)	0.19
		0.43	Tan et al. 2015	Qingdao, Shandong				
		0.78	Tan et al. 2015	Qingdao, Shandong				
		0.19-042	Gao 2012		0.10.0.00	0.40	0.14.0.00	0.40
	Groundwater	1.40	Wang et al.	Survey, depend on the	0.18-0.20	0.48	0.14-0.69	0.40
Water Sourcing		1.40	2012	local ground water level				
	Desalination	3.5	Xie 2009			2.58-8.5		
		1.4	Tan et al. 2015	Brackish water	-		-	3.5
		4	Tan et al. 2015	Seawater				
	Recycled Water	0.82	Tan et al. 2015	Qingdao, Shandong	_	1_2 5	_	0.82
	Recycled Water	0.2-1.5	Gao 2012		_	1-2.5	_	0.02
	Watan Transfor	0.0045/km	Gao 2012				0.004-0.005	0.5 in-province
	water fransier	0.7-1.14	Tan et al. 2015	Qingdao, Shandong	-	-	(per km)	1.8 inter-province
		0.29	Smith 2015	Urban Water Plants				
Water Treatmen	t & Distribution	0.189	Wang 2008	Anqing,Anhui	0.37-0.48	-	0.184-0.47	0.40
		0.20, 0.40, 0.47	Gao 2012	Urban Water Plants				
Wastewater Treatment (&		0.29	Yang et al. 2008	559 WWTPs				
		0104	C = = 0010	Representative	0.25-0.50	0.62_0.87	_	0.30
collee	ction)	0.1-0.4	Gao ZUIZ	examples	0.25-0.50	0.02-0.07		0.50
		0.30	Yu et al. 2014	Natioanl average				
		0.2	Li et al. 2015	Shenzhen,Guangdong				l

표 23. 급수 사이클의 에너지 인텐시티

출처: Chu (2017)

타. 전 세계 도시들 #3 (Lam 등, 2017)

Lam 등(2017)은 전 세계 30개 도시의 급수 과정에서 에너지 사용 및 인텐시티를 정량화 하고 새로운 시간 기반 물-에너지 프로파일링 접근법을 적용하여 그 변화를 설명하였다.

급수과정에서 1인당 에너지 사용 범위는 10 kWh/p/a(2015, Melbourne)에서 372 kWh/p/a (San Diego, 2015)의 범위를 나타내었다. 그리고 도수 및 배·급수 과정에서 사용되는 에너지가 해당 급수 시스템의 에너지 사용을 좌우하였다.

제시된 새로운 물-에너지 프로파일링 접근법은 [그림 31]에서 나타난 바와 같이 급수과정 에서 에너지 사용에 관한 스냅샷을 제공한다. 해당 접근법 도시가 시간에 따라 어떻게 변화하였는지를 추적하기 용이한 방법이다. 이를 위해 도시 간 비교 및 벤치마킹을 목적 으로 1인당 물 사용량(L/p/d), 관련 에너지 사용량(kWh/p/a) 및 에너지 강도(kWh/kL) 측면 에서 도시의 상대적 성과를 시각적으로 보여준다. 그 결과 에너지 인텐시티(점선으로 표 현)는 멜버른의 0.11 kWh/kL에서 벵갈루루의 2.31 kWh/kL까지 폭넓은 범위의 값을 나타 내었다. 조사된 도시들 중 5개 도시(방갈루루, 로스앤젤레스, 멕시코시티, 샌디에이고, 퍼 스)는 상수 시스템의 에너지 인텐시티가 1 kWh/kL 이상의 매우 높은 값을 나타내었다.

그림 31. 30개 도시의 물-에너지 현황, 물 공급 및 총 물 사용량 1인당 에너지 사용량 출처: Lam 등(2017)

[그림 32]에서와 같이 시계열 데이터(2000 - 2015년 사이)가 존재하는 17개 도시에 해당 접근법을 적용하여 시간에 따른 변화를 분석하였다. 그 결과 물 공급과정에서 1인당 에 너지 사용량 감소(11% - 45% 감소)가 일반적으로 관찰되었다. 이 같은 감소는 대부분 도 시의 급수 시스템의 효율이 개선된 것에 기인하는 것으로 보인다. 에너지 인텐시티는 이 들 도시 중 5개 도시가 소폭(6~17%)의 감소율을 보였고, 7개 도시는 6%(도쿄, 2000~2014) 부터 222%(퍼스, 2001~2015)의 큰 범위에 상승을 나타내었다.

그림 32. Water-Energy Profile for a Sub-sample of 17 Cities, showing their Trajectories 출처: Lam 등(2017)

급수 시스템의 에너지 인텐시티는 취수 및 도수, 정수처리, 배·급수의 3부분으로 나누어서 도시별로 [표 24]와 같이 제시되어 있다. 그 결과 펌프에 사용되는 에너지가 도시의 급수 시 스템에서 에너지 사용의 주요 부분을 차지하는 것을 알 수 있었다. 원수 취수 에너지 인텐 시티는 0.006~2.624 kWh/kL(8개 도시, 평균 1.086 kWh/kL)이고 배·급수의 에너지 강도는 0.010~0.341 kWh/kL(15개 도시, 평균 0.167 kWh/kL)이었다. 지표수 취수 및 정수처리 과정의 에너지 인텐시티 범위는 0.048~0.335 kWh/kL이며(유역 간 물 이동이 크지 않은 10개 도시의 경우), 지하수 취수 및 정수처리 과정의 에너지 인텐시티 범위는 0.240~0.430 kWh/kL(2개 도 시의 경우)이었다. 정수처리의 인텐시티는 0.027~0.204 kWh/kL(8개시, 평균 0.076 kWh/kL)로 펌프에 사용되는 에너지 인텐시티에 비해 상대적으로 낮은 값을 나타내었다.

표 24. 도시 상수 시스템에서 공정별 에너지 인텐시티

City/Region/Country	Ene	Data source		
-	Raw water pumping	Water treatment	Water distribution	
,	Energ	gy figures from this work		
Brisbane, Australia	Conventional: (D.307*	0.211	Refer to Table 6S in
	Seawater desalination	on: 3.82a,*		Supplementary Material
	-	Potable water recycling: 1.14a		
Melbourne, Australia	0.109*		0.030	
Sydney, Australia	Shoalhaven drought transfer: 1.93 Other sources: -b	Conventional: -b	-p	
_	Seawater desalinati	ion: 3.38*		
Toronto, Canada	0.335*		0.341	
Copenhagen, Denmark	0.240*		0.010	
Bangalore, India	2.100c,*		0.210	
Delhi, India	-р	0.204	0.017	
Sapporo, Japan	0.032	0.040	0.058	
Tokyo, Japan	0.055	0.168	0.305	
Yokohama, Japan	0.155	0.029	0.169	
Oslo, Norway	0.216*	0.135		
Bangkok, Thailand	0.006	0.042	0.169	
Denver, U.S.A.	0.074*		0.114	

Los Angeles, U.S.A.	Los Angeles Aqueduct: 0d California Aqueduct - West branch: 2.092	0.027	0.159	-
	California Aqueduct - East branch: 2.624 Colorado River Aqueduct: 1.622			
	Local groundwater:	: 0.430c,*		
San Diego, U.S.A.	California Aqueduct - East branch: 2.624 Colorado River Aqueduct: 1.622	0.029	0.336	
San Francisco, U.S.A.	0.146*		0.244	
	Energ	y figures from literature		
Australia	Surface water/ groundwater: 0.25-3.3	Conventional: 0.2-1 Seawater desalination: 3.3-8.5	-	(Plappally and Lienhard, 2012)
U.S.A.	Surface water: 0.035-3.59	Conventional (primary): 0.07 Seawater desalination: 2.58-5.49	0.18-0.32	
Northern California, U.S.A.	0.04	-	-	
Southern California, U.S.A.	2.3	-	_	(Olsson, 2012)
Sweden	0.24	0.12	0.1	-
Copenhagen, Denmark	0.18*		0.1	(Loubet et al., 2014)
Sydney, Australia	0.08*		0.24	

출처: Lam 등(2017)

해당 연구에서 적용된 일부 도시는 지역 지형을 더 잘 활용하고, 기후 이벤트를 활용하고, 공급 시스템의 에너지 효율을 개선함으로써 물 공급에 대한 에너지 사용 관리에 대 한 합리적인 방안을 제시하였다. 따라서 도시는 벤치마킹 대상으로 매우 적합하다. 그리 고 물손실(실손실과 명목손실)과 관련된 에너지는 여러 도시에서 매우 상당한 것으로 확 인되었으며 상당한 에너지 절약 잠재력(즉, 인구 가중 평균 16 kWh/p/a, 물 공급에 대한 평균 에너지 사용량의 25%)을 지니고 있는 것으로 나타났다.

파. 영국의 6개 지역(Majid 등, 2020)

Majid 등(2020)은 [그림 33]에서 나타난 영국의 6개 수자원 구역(water resource zone, WRZ)의 도시 물순환 시스템에서 에너지와 관련된 기술 통계를 [표 25]로 제시하였다.

그림 33. Thames Water의 용수 공급 수자원 구역

출처: Majid 등(2020)

표 25. 2014년 수자원 존별(Water Resource Zone) 급수시스템 관련 요약통계

Water Resource Zone	Population (p)	Water Demand (ML d^{-1})	Energy Use (GWh Year ⁻¹)	و (kWh m ⁻³)
Guildford	150,136	44.7	10.6	0.65
Henley	49,082	13.1	3.4	0.71
Kennet Valley	389,946	98.4	32.9	0.92
London	6,946,620	2048.1	389.2	0.52
SWA	507,627	135.7	31.4	0.63
SWOX	999,996	261.9	44.7	0.47
Thames Water	9,043,407	2602.0	512.2	0.65

출처: Majid 등(2020)

분석 기간 동안 총 에너지 소비의 주요 요인은 상수관망(33%), 하수처리(32%), 정수처리 (24%), 하수관망(6%), 담수화(2%) 순으로 나타났다. [그림 34]와 [그림 35]는 2009년 9월부 터 2014년까지 시스템의 총 전력 소비 시계열을 도시 물순환 시스템 부문별로 나타내었 다. 이 기간(60개원) 동안 사용된 전력 사용량은 4,426 GWh로, 연간 870 GWh에 해당한 다.

출처: Majid 등(2020)

그림 35. 각 기능별 상대적인 변화율

출처: Majid 등(2020)

[그림 36]에서와 같이 총 전기 소비량의 시간적 변화를 관찰할 때, 연구 기간 동안 시스 템 전체에 걸쳐 지속적인 전기 사용 증가 추세가 뚜렷하였으며, 첫 번째 기간과 마지막 기간 사이에 월 전력 소비량은 56 GWh에서 86 GWh로 증가함을 알 수 있었다.

그림 36. Thames water Utilities의 전력사용량 분해: (a) 관측 시계열 f; (b) 추세 α; (c) 계절 위상 β; (d) 무작위 성분 γ

출처: Majid 등(2020)

하. 문헌 리뷰 #2 (Wakeel 등, 2016)

Wakeel 등(2016)은 [표 26]에서와 같이 지역별로 도시 물순환 시스템의 공정에 따른 에너 지 사용을 조사하여 제시하였다.

표 26. 지역	ᅧ별 도시 물 쉰	·환 시스템 단겨	∥별 에너지 소비량
----------	------------------	-----------	------------

	Region	Water supply sources/stages	Water sector process	Energy use	Reference
		Groundwater extraction	Groundwater pumping	0.48-0.53 kW h/m ³	Rocheta & Peirson (2011)
		Water treatment	Raw water treatment	0.1-0.6 kW h/m ³	Marsh (2008)
	Australia	End use	Residential end use	$12.77 \times 109 \text{ kW h/annum}^2$	Kenway et al. (2008)
		Wastewater treatment	Advanced WWT	0.8-1.5 kW h/m ³	Marsh (2008)
		Desalination	Seawater desalination	4 kW h/m ³	Rocheta & Peirson (2011)

Sydney, Australia	Surface water extraction/pumping	Water supply pumping for 2006/07	0.92 kW h/m ³	Kenway et al. (2008)
	Water treatment	Raw water treatment for 2006/07	0.1 kW h/m ³	Kenway et al. (2008)
	Waste water treatment	WWT energy use in 2006/07	0.38 kW h/m ³	Kenway et al. (2008)

	Ground water	Water supply system	1.02 kW h/m ³	Griffiths-Sattenspiel & Wilson (2009)
	extraction	Transportation	1.4-5.8 MJ/L	Gleick & Cooley (2009)
		Groundwater pumping	0.18-0.49 kW h/m ³	Goldstein & Smith (2002)
		Raw water treatment	0.027-4.32 kW h/m ³	EPA (2008)
US	Water treatment	Surface water treatment	0.371-0.392 kW h/m ³	Goldstein & Smith (2002)
		Water treatment	0.0001-0.02 MJ/L	Gleick & Cooley (2009)
	Thermal process	Heating of residential water	0-203,600 kW h M/G	Griffiths-Sattenspiel & Wilson (2009)
		Water cooling process	0.2-0.4 MJ/L	Gleick & Cooley (2009)
	End uses	US residential end use	208.38 kW h/m ³	Griffiths-Sattenspiel & Wilson (2009)
	Waste water treatment	Waste water	0.177-0.780 kW h/m ³	Goldstein & Smith (2002)
	•			

	Water supply & treatment	Supply & treatment	80-4200 kW acre/foot	Cohen et al. (2004)
San Diego Country, US Waste water treatm	Fred	Residential	0-27,200 kW h acre/foot	Cohen et al. (2004)
	End use	Commercial	0-67,700 kW h acre/foot	Cohen et al. (2004)
	Waste water treatment	Treatment	130-980 kW acre/foot	Cohen et al. (2004)

California, US	Energy consumption in	Ground water extraction & pumping	0.14-0.69 kW h/m ³	Plappally & Lienhard (2012)
-------------------	--------------------------	--------------------------------------	-------------------------------	-----------------------------

Region	Water supply sources/stages	Water sector process	Energy use	Reference
		Water supply and conveyance	0.3.7 kW h/m ³	Kelin et al. (2005), California Energy Commission (2005)
		Water treatment	0.03-0.4 kW h/m ³	Kelin et al. (2005), California Energy Commission (2005)
	different stages of water system	Water distribution	0.2-0.32 kW h/m ³	Kelin et al. (2005), California Energy Commission (2005)
		Waste water collection & treatment	0.3-1.2 kW h/m ³	Kelin et al. (2005); California Energy Commission (2005)
		Waste water discharge	0-0.11 kW h/m ³	Kelin et al. (2005); California Energy Commission (2005)
		Recycling and distribution	0.11-0.32 kW h/m ³	Kelin et al. (2005); California Energy Commission (2005)

Northern California, US Water system	Energy	Water supply and conveyance	0.04 kW h/m^3	California Energy Conmission (2005)
		Water treatment	0.03 kW h/m ³	California Energy Conmission (2005)
	consumption in different stages of	Water distribution	0.32 kW h/m ³	California Energy Commission (2005)
	water system	Waste water collection	0.71 kW h/m ³	California Energy Commission (2005)
		Total	1.04 kW h/m ³	California Energy Conmission (2005)

Southern California, US		Water supply & conveyance	2.4 kW h/m ³	California Energy Conmission (2005)
	Energy consumption in different stages of water system	Water treatment	0.03 kW h/m^3	California Energy Commission (2005)
		Water distribution	0.32 kW h/m ³	California Energy Commission (2005)
		Waste water collection	0.71 kW h/m ³	California Energy Conmission (2005)
		Total	3.35 kW h/m ³	California Energy Conmission (2005)

Northern and Southern California, US Water treatment Raw water treatment 0.02	27 kW h/m ³ California Energy Commission (2005)
---	---

Ontario,	Surface water extraction and supply	Pumping	5.55×10^9 kW h/annum ²	Maas (2010)
Canada	End use	Residential heating	24.6 kW h/m ³	Maas (2010)

Central Arizona, US	Groundwater extraction	Lifting groundwater	3.3 kW h/m ³	McMahon & Price (2011)

Western China	Surface water extraction and pumping	Pumping of water over 450 km pipeline	7.1×10^9 kW h/annum ²	Marsh (2008)

Region	Water supply sources/stages	Water sector process Energy use		Reference	
		Water extraction and conveyance	0-2.1 kW h/m ³		
	Energy intensity in different stages of water cycle	Water treatment	0.11-4.67 kW h/m ³	Corominas (2010):	
C		Energy intensity in	Water distribution	0.12-0.22 kW h/m ³	Cramwinckel (2006);
Spain		Wastewater treatment	0.41-0.61 kW h/m ³	Guillamón (2007); Sala	
		`Water recycling & conveyance	0.32-0.85 kW h/m ³	(2007)	
		Waste water discharge	0-0.11 kW h/m ³		

		Surface water extraction	0.13-0.20 kW h/m ³	Liu et al. (2013); Hu et al. (2013); China Urban
		Groundwater extraction	0.37 kW h/m ³	Water Association (2012); Al-Karaghouli &
China	Water cycle	Distribution of water	0.30 kW h/m ³	Kazmerski (2013);
		Desalination	5.9 kW h/m ³	Gude (2011); Gude et al.
		Recycling	0.82 kW h/m ³	(2010); WRI (2014)
		Wastewater treatment	0.26 kW h/m ³	

Courth		Purification of water	0.07-0.10 kW h/KL	
	Energy consumption In water cycle	Distribution of water	0.10 kW h/KL	
Africa		consumption In water cycle	Collection of waste water	0.14 kW h/KL
		Treatment of waste water	0.44 kW h/KL	

Arabian	Wastewater	Primary treatment	0.1-0.3 kW h/m ³	Siddiqi & Anadon (2011)
Gulf	treatment	Secondary treatment	0.272-0.59 kW h/m ³	Siddiqi & Anadon (2011)

Global level		Surface water supply	0.0002-1.74 kW h/m ³	Plappally & Lienhard (2012); Sala and Serra (2004)
		Ground water pumping	0.37-1.44 kW h/m ³	Plappally & Lienhard (2012); Sala and Serra (2004)
	Water sector	Desalination (RO)	2.4-8.5 kW h/m ³	Plappally & Lienhard (2012); Sala and Serra (2004); Von Medeazza (2005)
		Waste water treatment	0.38-1.122 kW h/m ³	Plappally & Lienhard (2012); Sala and Serra (2004)
			0.18-0.63 kW h/m ³	Plappally & Lienhard (2012);
		Recycling	1.0-3.8 kW h/m ³ (rever se osmosis)	Sala and Serra (2004); Schroeder et al. (2012)

출처: Wakeel 등(2016)

2.5.3 취수 공정

가. 취수 시 지하수와 지표수의 비율

[표 27]에서 나타난 바와 같이 EU 회원국들의 2002년에서 2009년까지 주민 1인당 연간 취수량, 연간 지표수 취수량, 연간 지하수 취수량을 조사하였다. 조사된 국가들의 주민 1 인당 연간 취수량은 35 m³ ~ 272 m³ 사이의 넓은 범위를 나타내었으며, 이 값은 해당 국 가에 대한 도시 물순환 시스템의 특성을 반영한다. 예를 들면, 아일랜드의 주민 1명당 연 간 취수량은 149 m³로 높은 값을 나타내었는데, 이는 물을 사용하는 것이 무료인 것에 기인한다. 반면, 불가리아 이와 유사한 주민 1명당 132 m³의 값을 나타내었는데 높은 값 을 나타낸 주요 원인으로는 상수관망에서 높은 물손실로 판단된다. 지하수와 지표수 자 원의 물 취수 비율을 볼 때도 차이가 뚜렷하였다. 아일랜드, 그리스, 스페인, 영국, 노르 웨이, 마케도니아에서는 지표수로부터 많은 양의 물을 취수하였고, 크로아티아, 크로아티 아, 이탈리아, 리투아니아, 몰타, 오스트리아, 슬로베니아, 슬로베니아에서는 지하수로부터 많은 양의 물을 취수하였다.

	Total Fresh Water	Fresh surface water	Fresh ground water	Erech surface water	Enorth ground water
	Abstraction	abstraction	abstraction	Fresh surface water	Fresh ground water
	(m ³ /inch·year)	(m ³ /inch·year)	(m ³ /inch·year)	abstraction (%)	abstraction (%)
Belgium	70	24	46	34	66
Bulgaria	132	70	62	53	47
Czech Republic	70	38	33	54	46
Denmark	76	1	76	1	99
Germany	64	18	46	28	72
Estonia	44	23	21	53	47
Ireland	148	110	39	74	26
Greece	77	56	21	73	27
Spain	132	98	34	74	26
France	96	37	59	38	62
Croatia	113	14	99	13	87
Italy	153	22	131	14	86
Cyprus	61	29	33	47	53
Lithuania	37	1	37	1	99
Luxembourg	88	41	47	47	53
Hungary	71	31	40	44	56
Malta	35		35	0	100
Netherlands	78	30	47	39	61
Austria	73	0	73	0	100
Poland	55	18	37	32	68
Portugal	92	57	35	62	38
Romania	79	55	25	69	31
Slovenia	85	2	82	3	97
Slovakia	64	10	53	16	84
Finland	78	32	46	41	59
Sweden	101	64	36	64	36
United Kingdom	123	92	31	75	25
Iceland	272	10	262	4	96
Norway	179	163	16	91	9
Switzerland	139	25	114	18	82
Macedonia	112	93	19	83	17
Serbia	93	27	66	29	71
Turkey	73	32	40	44	56

표 27. 유럽 국가의 공공 급수별 연간 평균 담수 취수(2002-2009) (m³/inh*년)

출처: EUROSTAT (2013)

	Population	Water Withdrawals in Million Gallons per Day (MGD)				
	Public Supply	Groundwater	Surface Water	Total		
Total for U.S. (Includes Puerto Rico and U.S. Virgin Islands)	258,000,000	14,600 (33%)	29,600 (67%)	44,200 (100%)		

Source: Estimated Use of Water in the United States in 2005, U.S. Department of the Interior, U.S. Geological Survey, Circular 1344, Reston, Virginia: 2009, <u>http://pubs.usgs.gov/circ/1344/pdf/c1344.pdf</u>.

그림 37. 2005년 미국 공공급수 취수량

출처: EPRI & WRF (2013)

나. 지하수 취수 공정 에너지 인텐시티

[표 7]에서 나타난바와 같이 지하수 취수는 총 20개 연구에서 관측되었으며, 평균적으로 0.822 kWh/m³의 에너지 인텐시티가 사용되었다. 이는 전체 물순환 공정에서 높은 부분을 차지하는 수치이다. 표준편차는 0.794 kWh/m³로 산정되었으며 최솟값과 최댓값은 각각 0.190 kWh/m³, 3.300 kWh/m³으로 3.110 kWh/m³의 큰 범위를 보였다. 첨도와 왜도는 각각 4.636과 2.197로 분석되었다.

급수 시스템에서 지하수 및 지표수 취수에 따른 에너지 사용량을 조사한 결과, 지하수에 대한 직접 에너지 사용량이 지표수에 비해 27% 높은 것으로 나타났다(Mo 등, 2011). 이와 유사한 결과가 또한 Electric Power Research Institution에 의해 보고되었는데, 지하수 공 급 시스템은 지표수 공급 시스템보다 단위 기준으로 약 30% 더 많은 직접 에너지를 필요 로 한다는 결론을 내렸다(Goldstein & Smith, 2002). 이는 지하수 취수가 더 에너지 집약 적임을 보여준다. Water in the West (2013)는 [표 28]에서와 같이 캘리포니아지역의 수원 에 따른 각각의 공급 시스템에서 에너지 인텐시티를 제시하였다.

Energy Range of Energy Intensities Observed (kWh/m							n ³)	
	Functional Component	Primary Energy Drivers	Intensity From Prior Studies	Northern & Central Coast	Central Valley	Southland	Desert	Statewide
	Local Surface Water	Pumping		0.040-0.32				0.040-0.32 0
Ň	Groundwater	Pumping	0.142-0.60 0	0.452-0.77 2	0.239-0.52 6	0.374-0.67 4	0.573-0.70 1	0.239-0.77 2
upply	Brackish Desalination	Treatment	0.328-1.37 9			0.374-0.48 2		0.374-0.48 2
	Recycled	Incremental	0.079-0.31	0.283-0.57		0.305-0.90		0.283-0.90
	Water	Treatment	7	2		1		1
	Seawater Desalination	Reverse Osmosis	3.646					

표 28. 캘리포니아의 다양한 공급원에 대해 관측된 에너지 인텐시티(kWh/m³)

출처: Water in the West (2013)

지하수 취수에 필요한 에너지는 지하수 수위, 펌프 흡입압, 토출압, 크기, 효율에 따라 달 라진다. 지하수 취수에 대한 에너지 인텐시티는 펌핑해야 하는 깊이와 토출압 사이에는 본질적으로 선형 관계가 존재한다. Martin 등(2011)은 [그림 38]에서와 같이 취수 깊이와 토출압에 따른 에너지 인텐시티를 제시하였다. 미국에서는 전체 에너지의 1~2%가 지하수 취수를 위해 사용되며, 캘리포니아에서는 총 발전량의 7%가 지하수의 펌핑에 소비되었 다.

Lift

feet

0

25

50 75

100

125

150

200

250

300

350

400

10

0.21

0.67

0.89

1.35

1.58

2.03

49

3.86

20

0.42

0.65

0.88

1.33

1.79

2.25

3.16

3.61

Pressure at Pump Discharge, psi						Energy Source	lini	fe			Multipli	
6	30	40	50	60	80	Ellergy Source	UII	ito .			mutupi	51
1	0.63	0.84	1.05	1.26	1.69	Diesel	gal	lons			1.00	
i. –	0.86	1.07	1.28	1.49	1.91	El de la	3000	an to a	258			
Ê.	1.09	1.30	1.51	1.72	2.14	Electricity	KIO	watt-nou	rs		14.12	
È.	1.32	1.53	1.74	1.95	2.37	Pronane	nal	inne			1.81	X.
1	1.54	1.75	1.97	2.18	2.60	riopano	gai	NU10			1.01	3
1	1.77	1.98	2.19	2.40	2.83	Gasoline	gal	ions			1.44	3
(2.00	2.21	2.42	2.63	3.05	Natural Gas	Natural Gas 1000 cubic feet		eet		0.20	0.2026
i.	2.46	2.67	2.88	3.09	3.51			10 000.0	441		0.20	
i i	2.91	3.12	3.33	3.54	3,97		and the state of t					_
1	3.37	3.58	3.79	4.00	4.42	Rating %	100	90	80	70	50	
Ê.	3.82	4.03	4.25	4.46	4.88							_
	4.28	4.49	4.70	4.91	5.33	Multiplier	1.00	1.11	1.25	1.43	2.00	

펌핑에 필요한 디젤 연료량(갤런)

(c) 성능 등급 100%에서 에이커 인치 (d) 펌핑 플랜트 성능 등급이 100% 미만인 경우 변환 계수 승수

(b) 펌핑효율 평가에 필요한 양력 및

토출압력 측정도

그림 38. 취수 깊이와 토출압에 따른 에너지 인텐시티

출처: Martin 등(2011)

30

3.33

DISCHARGE PRESSURE

STATIC WATER LE

WELL DRAWDOWN

[그림 39]에서와 같이 캘리포니아의 여러 장소에서 지하수 펌프에 대한 에너지 인텐시티 를 제시하였으며, 지하수가 펌핑되는 깊이에 따라 지하수 펌핑에 대한 에너지 수요가 어 떻게 증가하는지를 보여주었다. [표 29]는 공급되는 면적과 지하수 수위에 따른 사용되는 에너지를 나타내고 있다.

출처: Burt & Soto

표 29. 직접적인 에너지 영향

District Name	Conversion Acres	Depth to Groundwater, ft	Groundwater Energy (kW·hr/ac·ft)	Conversion Acre Energy/year (kW·hr)
SHAFTER·WASCO I.D.	100	270	663	198,886
SAN LUIS CANAL CO.	490	350	859	1,263,291
KERN DELTA W.D.	960	270	663	1,909,301
SOLANO I.D.	960	120	295	848,578
STOCKTON·EAST W.D.	1,400	164	403	1,691,263
MODESTO I.D.	1,925	50	123	708,990
PIXLEY I.D.	1,930	150	368	2,132,495
OAKDALE I.D.	2,208	80	196	1,301,153
NORTH SAN JOAQUIN W.C.D.	2,400	160	393	2,828,594
LOWER TULE RIVER I.D.	2,800	115	282	2,371,894
ORLAND ARTOIS W.D.	2,830	125	307	2,605,769
GLENN COLUSA I.D.	3,500	30	74	773,444
ORANGE COVE I.D.	3,500	360	884	9,281,324
ANDERSON·COTTONWOOD I.D.	3,610	5	12	132,959
TULARE I.D.	4,275	120	295	3,778,825
CONSOLIDATED I.D.	4,450	165	405	5,408,034
MERCED I.D.	5,000	50	123	1,841,533
SOUTH SAN JOAQUIN I.D.	5,025	150	368	5,552,221
ALTA I.D.	7,780	165	405	9,455,901
FRESNO I.D.	9,000	170	417	11,270,179
MADERA I.D.	9,000	160	393	10,607,227

2.5.4 도수 공정

가. 도수 공정 에너지 인텐시티

[표 7]에서 나타난바와 같이 도수 공정의 평균 에너지 인텐시티는 지하수 취수보다 약 10% 높은 0.910 kWh/m³로 분석된 반면, 중앙값은 27% 낮은 0.370 kWh/m³였으며 최빈값 은 100% 높은 0.832 kWh/m³로 나타났다. 일 사분위수와 삼 사분위수는 각각 0.150 kWh/m³, 1.813 kWh/m³로 큰 표준편차(1.099 kWh/m³)가 산정되었다. 첨도는 1.513였으며 왜도는 1.448로 분석되었다.

도수과정에서 에너지 소비량은 거리, 이송 지역 표고 변화, 관경 및 관 내 마찰에 의한 수두 손실에 따라 크게 달라진다. 따라서 도수과정의 에너지 인텐시티는 도시 물순환 시 스템의 위치 특성에 크게 의존하며, 각 지역별 에너지 사용 산정 시에는 상세한 평가가 별도로 고려되어야 한다. [표 30-34]는 다양한 도수 과정에 대한 에너지 사용을 나타낸다.

표 30. 상수 시스템의 에너지 소비량

Location	Length, lift (km); (m)	Energy (kWh/m ³)	Unit value (kW·h/m ^{3.} km)	Reference
From Colorado River to Los Angeles (US)	(389); (-)	1.6	0.004	Wilkinson (2000)
From Coastal Branch to Aquaduat (US)	(457): (-)	2 31	0.005	Dale (2004);
From Coastar Branch to Aqueduct (03)	(437), (-)	2.31	0.005	Anderson (2006)
				Stokes & Horvath
Water pipeline supply (Australia)	(450); (-)	3.3	0.007	(2009); Scott et al.
				(2009)
SCDD to DIWSS (Australia)	$(116) \cdot (.)$	0.21	0.002	Scott et al. (2009);
SSDF to FIWSS (Australia)	(110), (-)	0.21	0.002	AG-DSEWPC (2010)
Shoal haven River (Australia)	(-); (600)	2.4		Anderson (2006)
Enom Tortogo to Aguadulas (Spain)	$(745) \cdot ()$	4.07	0.005	Raluy et al. (2005);
FIOIII TOLIOSA TO Aguaduice (Spain)	(745), (-)	4.07	0.005	Muñoz et al. (2010)

출처: Wakeel 등(2016)

표 31. 지하수 펌핑에 필요한 에너지

Location	Length, lift (km); (m)	Energy (kWh/m ³)	Unit value (kW·h/m ^{3.} km)	Reference
West Branch Aqueduct, CA (USA)	(502); (-)	2.07	0.004	GEI/Navigant, 2010
Coastal Branch Aqueduct, CA (USA)	(457); (-)	2.31	0.005	Dale, 2004: Anderson, 2006
Transfer From Colorado River to Los Angeles, CA	(389); (-)	1.6	0.004	Wilkinson, 2000
Shoalhaven River, Australia	(-); (600)	2.4		Anderson, 2006
Water Pipe, Australia	(450); (-)	3.3	0.007	Stokes J. (2009); Scott (2009)
SSDP to PIWSS, Australia	(116); (-)	0.21	0.002	Scott C., 2009; AGDSEWPC, 2010
PSDP to PIWSS, Australia	11.2	0.055	0.005	Scott C., 2009; AGDSEWPC, 2010
From Tortosa to Aguadulce (Spain)	(745); (-)	4.07	0.005	Raluy R.G, 2005; Munoz I., 2010

출처: Gomez 등(2015)

Average	En anna Han			Distribution	Source	Water Distribut	tion (%)
Daily Flow Range (m3/day)	Intensity (kWh/m3)	Water Main length (km)	Unit value (kW·h/m3·km)	Pressure (psia)	Groundwater	Surface Water	Purchased Water
-11,356	0.528	203	0.002606	67	32	41	27
11,356- 18,927	0.370	222	0.001665	69	31	32	36
18,927- 75,708	0.423	557	0.000759	72	28	39	33
75,708- 2,271,246	0.396	4345	0.000091	62	7	68	25

표 32. 시스템 매개변수에 대한 가중평균

출처: EPRI & WRF (2013)

표 33. 상수시스템의 에너지 인텐시티 추정치(kWh/m³)

Unit Progoga	Plant Production (m3/day)													
Unit Process	3785	18927	37854	75708	189271	378541	946353							
Source Water Pumping														
Raw surface water pumping	0.038	0.038	0.038	0.038	0.038	0.038	0.038							
Raw groundwater pumping	0.243	0.243	0.244	0.244	N/A	N/A	N/A							

출처: EPRI & WRF (2013)

표 34. 원수 및 펌프 효율에 따른 에너지 인텐시티(kWh/m³)

I hit Deserve	Dumming Efficiency	Plan Production (m3/day)												
Unit Process	Pumping Eniciency	3785	18927	37854	75708	189271	378541	946353						
	High	0.031	0.031	0.031	0.031	0.031	0.031	0.031						
Raw water pumping, Surface Plant	Medium	0.038	0.038	0.038	0.038	0.038	0.038	0.038						
Surface Flant	Low	0.050	0.050	0.050	0.050	0.050	0.050	0.050						
	High	0.198	0.198	0.198	0.198	N/A	N/A	N/A						
Raw Water pumping,	Medium	0.244	0.244	0.244	0.244	N/A	N/A	N/A						
Si oundwater plant	Low	0.317	0.317	0.317	0.317	N/A	N/A	N/A						
	High	0.223	0.229	0.237	0.231	0.209	0.209	0.209						
Finished water pumping	Medium	0.275	0.281	0.292	0.285	0.258	0.258	0.258						
	Low	0.357	0.366	0.379	0.370	0.335	0.335	0.335						
Dumping officinosu	ia "wino to waton"	not moto	n officinca	w bigh = '	7E% modi	m = 6E0/	low = EOG)/						

Pumping efficinecy is "wire to water," not motor efficinecy: high = 75%, medium = 65%, low = 50%

출처: EPRI & WRF (2013)

나. 도수 공정 이론적 에너지 사용량

도·송수 과정과 배·급수 과정과 같은 상수관망에서 필요한 펌핑 에너지는 거리, 마찰 손 실, 물 흐름 및 압력 요건과 같은 몇 가지 요인에 따라 달라지며, 이는 아래와 같은 [식 1]으로 표현된다.

$$EC_{pumping(kWh) = f(l, Q, p, f_l)}$$
 수식 1

where

l = distance through which the water is to be pumped *f_l* = friction losses along the distance *l Q* = required volume of water *p* = pressure requirement at the point of use

Gomez 등(2015)은 상수관로의 섹션 "i"에서의 에너지 소비는 [식 2-4]와 같이 정의하였 다. 이 식에서 높이 차이(△H)는 상수관망의 두 지점(예를 들어 펌프장과 정수장) 사이의 표고 차이로 정의된다. 마찰 손실(△P)은 상수관망의 관로 또는 부속시설(밸브, 엘보 등) 에 따른 압력 손실을 의미하며, 달시-바이스바흐(Darch-Weisbach) 식 또는 하젠-윌리암스 (Hazen-Williams) 식을 이용하여 압력 손실을 계산할 수 있다.

$$ENE_{i} = (\Delta H_{i} + \Delta P_{i} + Psup_{i}) \bullet \rho_{water} \bullet g \bullet \frac{1}{3600} \bullet \frac{1}{1000} \bullet \frac{100}{\eta_{mec}} \bullet \frac{100}{\eta_{ener}} \bullet \frac{100}{\eta_{ener}}$$

where

$$\begin{split} i &= \text{pipleline section which contacts two points} \\ ENE_i &= \text{energy consumed in pumping } i \ (k Wh/m^3) \\ \Delta H_i &= \text{height difference (mwc)} \\ \Delta P_i &= \text{pressure losses due to friction (mwc)} \\ Psup_i &= \text{supplied pressure need for the final consumer (mwc)} \\ \rho_{water} &= \text{density of water (} 1000 \, kg/m^3) \\ g &= \text{gravity (} 9.81 \, m/s^2) \\ \eta_{mec} &= \text{average mechanical efficiency} \\ \eta_{emer} &= \text{fuel or electrical average efficiency of the motor} \end{split}$$

$$\Delta P = f \cdot \frac{L}{D/1000} \cdot \frac{\nu^2}{2 \cdot 9.81} \cdot \left(1 + \frac{\%_{LOC}}{100}\right)$$
 수식 3

where

f = Darcy-Weisbach friction factor

D = Internal diameter of the pipe (mm)

- L = Pipe length (m)
- ν = average water velocity (m/s)

 $%_{LOC}$ = percentage of the friction losses (%)

$$\frac{1}{\sqrt{f}} = -2\log_{10} \left(\frac{k/D}{3.7D/1000} + \frac{2.51}{R_e\sqrt{f}} \right)$$
 수식 4

where

 R_e = $(\nu)/\vartheta \cdot (D)/1000$ = Reynolds Number

 ϑ = kinematic water viscosity $(10^{-6}\,m^2/s)$

k = roughness of duct, pipe or tube surface (mm)

EPRI & WRF (2013)와 Shrestha (2017)는 [식 5-10]과 같이 필요한 에너지를 계산하는 이 론식을 제시하였다.

 $Electricity = ((Flow \times pumpinghead)/(3960 \times pumpingefficiency)) \times 0.746 \times 24$ 수식 5

$$E_t = \left[\frac{\gamma Q H_p(1+\alpha)}{\eta \cdot \eta_t} \cdot (1+f) \cdot T \cdot W\right]_t$$
 수식 6

$$E_t = (2.23 \times 10^{-3} \times \gamma Q H_p \times T)_t \text{ for } \alpha = 0.2, f = 0.3, \eta = 0.7 \text{ and } \eta_t = 1$$
 수식 7

$$D = \sqrt{4 \cdot Q/(\Pi \cdot \nu)} \qquad \qquad \ \ \dot{\gamma} \stackrel{\text{d}}{\to} 8$$

$$h_f = 10.674L \cdot C_{HW}^{-1.852} \cdot D^{-4.871} \cdot Q^{m1}$$
 수식 9

$$h_e = L \cdot \sin \theta$$
 수식 10

where

P: power of lift pump (kW)

- γ : specific weight of water (9806 N/m^3)
- Q: pumping capacity of lift pump (m^3/s)
- $H_{\scriptscriptstyle p}$: sum of average pressure requirement at houses (m)
- α : safety factor of pumping power (0.1 to 0.2)
- η : pump efficiency (65% to 85%)
- η_t : mechanical transmission efficiency (92% to 100%)
- E_h : energy consumed (kWh)
- f: friction loss within pipe
- T: time duration that a pump is operated (sec)
- W: conversion factor for Joule to Kilowatt-hour
- t: time
- D: diameter of pipe (m)
- Q: discharge (water demand) (m^3/s)
- ν : velocity (1.3 m/s)
- h_f : head loss due to friction (m)
- L: length of pipe (m)
- C_{HW} : Hazen-Willian constant (150)

- h_e : net elevation head (m)
- θ : average gradient of conveyance pipe (°)

2.5.5 정수처리 공정

가. 정수처리 세부 공정

지표수와 지하수의 물리학적, 화학적, 생물학적 처리 대상은 [그림 40]에 나타난 바와 같으며, 해당 요소를 처리하기 위한 정수처리 세부 공정은 [그림 41]에 제시되어 있다.

Classification	Constituent	Classification	Constituent
Physical	Turbidity Color Odors and tastes Gases	Physical	Total dissolved solids (TDS) Color Odor Gases
Chemical	Hardness and alkalinity Heavy metals (lead, mercury, copper, silver, etc.) pH (measure of acidity or basicity, which relate to corrosivity) Specific trace elements Specific organic compounds	Chemical	Iron Manganese Hardness and alkalinity Nitrate Suifate
Biological	Coliform bacteria (indicator organisms of potential pollution) Viruses Algae Giardia lambila (a cyst forming organism that causes of a form of gastroenteritis) Crystosnoridium (a cyst-forming protozoan parasite that also causes		pH (measure of acidity or basicity, which relate to corrosivity) Specific trace elements Specific organic compounds Other inorganic elements, such as arsenic Radionucides
	gastroenteritis and is more resistant to disinfection than <i>Glardia</i>) Cyanobacteria (blue-green algae) and metabolites (toxins)	Biological	Coliform bacteria (indicator organism of potential pollution) Viruses

그림 40. 지표수 및 지하수 내 주요 유해 물질

출처: EPRI & WRF (2013)

Constituent of Concern	Treatment Process	Applications
Microbial/biological contamination	Disinfection (chlorination, ozone, UV, and/or other oxidants) Conventional treatment (coagulation, flocculation, sedimentation, filtration, and disinfection), membranes	Surface water and groundwater Surface water, GWUI
Turbidity & dissolved organic matter	Conventional treatment, membranes	Surface water, GWUI
Color	Conventional treatment, ozone	Surface water, GWUI
Odors	Clarification, oxidation (chlorination, potassium permanganate, chlorine dioxide, or ozone), carbon adsorption	Surface water, GWUI
Iron and manganese	Ion exchange, oxidation (aeration, chlorination, or potassium permanganate) followed by filtration. Permanganate and greensand Biologically active filtration or biological filtration.	Groundwater and surface water Groundwater
Hardness	Ion exchange softening, time-soda softening, membranes	Groundwater and surface water
Dissolved minerals	Ion exchange, reverse osmosis, lime soda softening	Groundwater and surface water
Corrosivity (low pH)	pH adjustment with chemicals Carbon dioxide stripping by aeration	Groundwater and surface water Groundwater
Disinfection Byproducts	Reduce or eliminate prechlorination, remove THM precursors, ozonation, chloramination (substitute for chlorine)	Surface water, GWUI
Nitrate	Anion exchange, reverse osmosis, biological	Groundwater
Volatile organic compounds (VOCs)	Packed tower aeration Activated carbon	Groundwater Groundwater and surface water
Synthetic organics	Granular activated carbon, advanced codation	Surface water, GWUI
Radon	Packed tower aeration, granular activated carbon (for small systems)	Groundwater

Note: GWUI = Groundwater under the influence of surface water.

그림 41. 지표수 및 지하수 대표적인 처리과정

출처: EPRI & WRF (2013)

일반적인 정수처리는 [그림 42]에서와 같이 스크린, 혼화, 응집, 침점, 여과, 소독의 과정 을 거치며, 침전과 여과에서 발생된 슬러지는 [그림 43]의 과정으로 처리된다.

그림 42. 대표적인 지표수 정수처리 흐름도

출처: EPRI & WRF (2013)

그림 43. 정수처리장 슬러지 처리 흐름도

나. 정수처리 전체 공정 에너지 인텐시티

[표 7]에 나타난 바와 같이 총 32개의 데이터로부터 분석된 정수처리 평균 에너지 인텐시 티는 다른 공정에 비해 낮은 0.294 kWh/m³ 표준편차는 0.560 kWh/m³으로 확인되었다. 일 사분위수와 삼 사분위수는 각각 0.029 kWh/m³, 0.298 kWh/m³로 0.090 kWh/m³의 중앙값 을 가진다. 첨도와 왜도는 각각 9.415, 3.098로 나타났으며, 최솟값과 최댓값은 각각 0.005 kWh/m³, 2.390 kWh/m³으로 2.385 kWh/m³의 범위를 가진 것으로 분석되었다.

전 세계적으로 에너지 중 2~3%는 정수처리 및 공급에 사용되는 것으로 보고되었다. 미국 에서는 평균적으로 에너지 생산의 약 4%가 정수처리 및 공급에 소비되며 (Goldstein & Smith, 2002), 캘리포니아에서는 정수처리 및 공급 서비스에 의해 전력의 거의 5%가 소비 되었다(CEC, 2005). 스페인 지역에서 적용되는 담수화과정은 역삼투 담수화 방식을 사용 하기 때문에 물 처리에 대한 상한 에너지 소비량이 가장 높은 것으로 나타났다(Munoz, 2010). 그리고 캐나다는 막 프로세스 사용으로 인해 에너지 인텐시티가 높은 것으로 보고 되었다(Maas, 2009).

다. 지표수 정수처리 세부 공정별 에너지 인텐시티

정수 처리 과정에서 필요한 에니지량은 원수의 수질, 적용된 처리 기술, 수질 기준을 포 함한 다양한 요인에 따라 달라진다. 즉, 원수의 형태(지표수, 지하수, 기수, 해수)에 따라 적용되는 세부 공정은 다르며, 이에 따라 에너지 인텐시티는 크게 변하게 된다. 일반적인 정수처리 공정은 혼화, 응집, 침전, 여고, 소독(염소처리)의 과정으로 구성되며, UV와 오 존처리를 포함하는 고도처리가 포함되기도 한다. 그리고 정수처리 시설의 크기에 따른 단위 전력 소비량의 변화는 그리 크지 않다고 많은 문헌에서 보고되었다(Burton, 1996; Gleik, 2009; Gomez 등, 2015).

본 연구에서는 정수처리 세부 공정별 에너지 인텐시티를 조사하였다. 조사에 적용된 값 들은 [그림 44]와 [표 37-40]에 나타난 바와 같다. 정수처리 공정은 혼화 전 공정 (Coagulation all), 혼화제 주입(Coagulation feeding), 응집(Flocculation), 침전 (Sedimentation), 여과 전 공정(Filtration all), 석회 주입(Lime feeding), 역세(Filter backwash), 여과면 세척(Filter surface wash), 염소 소독(Disinfection chlorine), 소독제 주 입(Disinfectant feeding), 전체 고도처리(Advanced water treatment), 막 처리(Membrane), 오존 처리(Ozone), UV 처리 (UV), 슬러지 처리(Sludge treatment), 슬러지 이송(Sludge pumping)으로 분류하였다. 각 분류별 조사된 에너지 인텐시티와 그 출처는 [표 36]에 제 시되어 있으며, 각각의 에너지 인텐시티 기술통계 값은 [표 35]에 제시되어 있다. 고도처리 공정이 다른 공정에 비해 많은 에너지를 필요로 하며, 이는 수질에 따른 정수처리 에 너지 인텐시티의 변동이 큼을 의미한다.

표 35. 정수처리 세부 공정별 에너지 인텐시티 기술통계

	Coagul ation		Floccul ation	Sedime ntation	Filtration				Disinfe ction		Advanced water treatment				Sludge	
	all	Coagul ation feeding			all	Lime feeding	Filter backwash	Filter surface wash	Disinfe ctant feeding	Chlorin e	all	Membr ane	Ozone	UV	treatment	pumping
평균	0.009	-	0.002	0.002	0.083	0.000	0.002	0.002	0.001	0.030	0.955	0.119	0.020	0.007	-	0.001
표준 오차	0.000	-	0.000	0.000	0.041	-	0.001	-	0.001	-	_	0.026	0.009	0.003	-	-
중앙값	0.008	-	0.002	0.002	0.124	0.000	0.003	0.002	0.001	0.030	0.955	0.119	0.000	0.000	-	0.001
최빈값	0.008	-	0.002	0.002	0.124	-	0.003	-	-	-	-	0.211	0.000	0.000	-	-
일사분위수	0.008	-	0.002	0.002	0.000	-	0.001	-	-	-	-	0.026	0.000	0.000	-	-
삼사분위수	0.009	-	0.003	0.002	0.124	-	0.003	-	-	-	-	0.211	0.048	0.016	-	-
표준 편차	0.001	-	0.000	0.001	0.072	-	0.002	-	0.001	-	-	0.096	0.026	0.009	-	-
분산	0.000	-	0.000	0.000	0.005	-	0.000	-	0.000	-	-	0.009	0.001	0.000	-	-
첨도	5.469	-	0.000	8.000	-	-	-0.142	-	-	-	-	-2.364	-1.513	-2.779	-	-
왜도	2.339	-	1.440	2.828	-1.732	-	-1.187	-	-	-	-	0.000	0.668	0.380	-	-
범위	0.003	0.000	0.001	0.002	0.124	0.000	0.004	0.000	0.001	0.000	0.000	0.185	0.058	0.017	0.000	0.000
최솟값	0.008	0.000	0.002	0.002	0.000	0.000	0.000	0.002	0.000	0.030	0.955	0.026	0.000	0.000	0.000	0.001
최댓값	0.011	0.000	0.003	0.004	0.124	0.000	0.004	0.002	0.001	0.030	0.955	0.211	0.058	0.017	0.000	0.001
관측수	8	0	8	8	3	1	8	1	2	1	1	14	9	7	0	1

표 :	36.	정수처리	세부	공정별	에너지	인텐시티
-----	-----	------	----	-----	-----	------

Reference	Region	Coagul ation		Floccul ation	Sedime ntation	Filtrati on				Disinfe ction		Advan ced water treatm ent				Sludge	
		all	Coagul ation feeding			all	Lime feeding	Filter backw ash	Filter surfac ewash	Disinfe ctant feeding	Chlori ne	all	Membr ane	Ozone	UV	treatm ent	pumpi ng
EPRI & WRF (2013)		0.011															
EPRI & WRF (2013)		0.009															
Klein et al. (2005)		0.008															
EPRI & WRF (2013)		0.008															
EPRI & WRF (2013)		0.008															
EPRI & WRF (2013)		0.008															
EPRI & WRF (2013)		0.008															
EPRI & WRF (2013)		0.008															
EPRI & WRF (2013)				0.003													
EPRI & WRF (2013)				0.003													
Klein et al. (2005)				0.002													
EPRI & WRF (2013)				0.002													
EPRI & WRF (2013)				0.002													
EPRI & WRF (2013)				0.002													
EPRI & WRF (2013)				0.002													
EPRI & WRF (2013)				0.002													
EPRI & WRF (2013)					0.004												
Klein et al. (2005)					0.002												
EPRI & WRF (2013)					0.002												
EPRI & WRF (2013)					0.002												
EPRI & WRF (2013)					0.002												
EPRI & WRF (2013)					0.002												
EPRI & WRF (2013)					0.002												
EPRI & WRF (2013)					0.002												
GEI Consultants & NC	US,					0.124											

Reference	Region	Coagul ation		Floccul ation	Sedime ntation	Filtrati on				Disinfe ction		Advan ced water treatm				Sludge	
		all	Coagul ation feeding			all	Lime feeding	Filter backw ash	Filter surfac ewash	Disinfe ctant feeding	Chlori ne	all	Membr ane	Ozone	UV	treatm ent	pumpi ng
(2010)	Northern & Central Coast																
GEI Consultants & NC (2010)	US, Statewide					0.124											
Klein et al. (2005)						0											
Klein et al. (2005)							0										
EPRI & WRF (2013)								0.004									
Klein et al. (2005)								0.003									
EPRI & WRF (2013)								0.003									
EPRI & WRF (2013)								0.003									
EPRI & WRF (2013)								0.003									
EPRI & WRF (2013)								0.003									
EPRI & WRF (2013)								0									
EPRI & WRF (2013)								0									
Klein et al. (2005)									0.002								
Klein et al. (2005)										0.001							
Klein et al. (2005)										0							
Porse et al. (2020)											0.03						
Porse et al. (2020)												0.955					
EPRI & WRF (2013)													0.211				
EPRI & WRF (2013)													0.211				
EPRI & WRF (2013)													0.211				
EPRI & WRF (2013)													0.211				·
EPRI & WRF (2013)													0.211				
EPRI & WRF (2013)													0.211				·
EPRI & WRF (2013)													0.211				
EPRI & WRF (2013)													0.026				

Reference	Region	Coagul ation		Floccul	Sedime	Filtrati				Disinfe ction		Advan ced water				Sludge	
						-						ent					
		all	Coagul ation feeding			all	Lime fæding	Filter backw ash	Filter surfac ewash	Disinfe ctant fæding	Chlori ne	all	Membr ane	Ozone	UV	treatm ent	pumpi ng
EPRI & WRF (2013)													0.026				
EPRI & WRF (2013)													0.026				
EPRI & WRF (2013)													0.026				
EPRI & WRF (2013)													0.026				
EPRI & WRF (2013)													0.026				
EPRI & WRF (2013)													0.026				
GEI Consultants & NC (2010)	US, Northern & Central Coast													0.058			
GEI Consultants & NC (2010)	US, Statewide													0.058			
EPRI & WRF (2013)														0.037			
EPRI & WRF (2013)														0.03			
EPRI & WRF (2013)														0			
EPRI & WRF (2013)														0			
EPRI & WRF (2013)														0			
EPRI & WRF (2013)														0			
EPRI & WRF (2013)														0			
EPRI & WRF (2013)															0.017		
EPRI & WRF (2013)															0.016		
EPRI & WRF (2013)															0.016		
EPRI & WRF (2013)															0		
EPRI & WRF (2013)															0		
EPRI & WRF (2013)															0		·
EPRI & WRF (2013)															0		
Klein et al. (2005)																	0.001

MWh/Mm3

Unit Drogong	Plant Production (m3/day)								
Unit Process	3785	18927	37854	75708	189271	378541	946353		
Clarification									
Rapid mixing	0.011	0.009	0.008	0.008	0.008	0.008	0.008		
Flocculation	0.003	0.003	0.002	0.002	0.002	0.002	0.002		
Sedimentation	0.004	0.002	0.002	0.002	0.002	0.002	0.002		
Chemical feed systems	0.017	0.003	0.002	0.001	0.000	0.000	0.000		
Marafiltration (in lieu of sedimentation)	0.026	0.026	0.026	0.026	0.026	0.026	0.026		
Ultrafiltration (contaminant removal)	0.211	0.211	0.211	0.211	0.211	0.211	0.211		
Reverse Osmosis (brackish water)	1.585	1.574	1.572	1.572	1.197	1.197	0.780		
Reverse Osmosis (ocean water)	3.170	3.170	3.170	3.170	3.170	3.170	3.170		
Dissolved air flotation	0.029	0.047	0.047	0.048	0.047	0.047	0.047		
Air stripping	0.099	0.098	0.099	0.099	N/A	N/A	N/A		
Repumping within treatment plant	0.000	0.000	0.000	0.000	0.010	0.010	0.010		
Filtration & Solids handling									
Backwash water pumps	0.004	0.003	0.003	0.003	0.003	0.000	0.000		
Residuals Pumping	0.011	0.001	0.001	0.001	0.001	0.001	0.000		
Thickened Solids pumping	0.000	0.000	0.000	0.002	0.002	0.002	0.000		
Disinfection, Pumping & Nonprocess Loads									
Onsite chlorine generation	0.022	0.022	0.022	0.000	0.000	0.000	0.000		
for disinfection									
Ozone disinfection	0.037	0.030	0.000	0.000	0.000	0.000	0.000		
UV disinfection	0.016	0.016	0.017	0.000	0.000	0.000	0.000		
Finished water pumping	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Nonprocesses loads (buindings,	0.070	0.000	0.000	0.000	0.000	0.000	0.000		
HVAC, lighting, computers, etc)	0.079								

출처: : EPRI & WRF (2013)

표 38. 정수처리 공정별 에너지 인텐시티

Process	Low	High	Reference	
Alum	0.26	0.26	Klein et al. 2005	
Polymer	1.24	1.24	Klein et al. 2005	
Rapid Mix	8.14	8.14	Klein et al. 2005	
Flocculation Basins	2.38	2.38	Klein et al. 2005	
Sedimentation Tanks	2.32	2.32	Klein et al. 2005	
Lime	0.32	0.32	Klein et al. 2005	
Filters	0.00	0.00	Klein et al. 2005	
Chlorine	0.05	0.05	Klein et al. 2005	
Clear well storage	0.00	0.00	Klein et al. 2005	
Filter backwash pump	3.25	3.25	Klein et al. 2005	
Filtes surface wash pump	2.03	2.03	Klein et al. 2005	
Decanted washwater to rapid mix	5.28	5.28	Klein et al. 2005	
Sludge pump	1.06	1.06	Klein et al. 2005	

출처: Wang (2014)

표 39. 정수장 세부 공정별 필요 에너지 인텐시티 (kWh/m³)

	Treatment Plant Size (m3/day)							
Item/Plant Production	3785	18925	37850	75700	189250	378500		
	Electricity Consumption (kWh/day)							
Rapid Mixing	0.011	0.009	0.008	0.008	0.008	0.008		
Flocculation	0.003	0.003	0.002	0.002	0.002	0.002		
Sedimentation	0.004	0.002	0.002	0.002	0.002	0.002		
Alum Feed System	0.002	0.001	0.000	0.000	0.000	0.000		
Polymer Feed System	0.012	0.002	0.001	0.001	0.000	0.000		
Lime Feed System	0.002	0.001	0.000	0.000	0.000	0.000		
Filter Surface Wash Pumps	0.002	0.002	0.002	0.002	0.002	0.002		
Backwash Water Pumps	0.003	0.003	0.003	0.003	0.003	0.003		
Residuals Pumping	0.001	0.001	0.001	0.001	0.001	0.001		
Thickened Solids Pumping	N/A	N/A	N/A	0.002	0.002	0.002		
Chlorination*	0.001	0.000	0.000	0.000	0.000	0.000		
General UV Irradiation	0.030	0.030	0.030	0.030	0.030	0.030		
Ozone	0.090	0.090	0.090	0.090	0.090	0.090		

출처: : Burton, 1996; Gleik, 2009; Gomez 등(2015)

표 40. 정수장 세부 공정별 필요 에너지량 및 에너지 인텐시티

Treatment Plant size (m ³ /day)	3785	18925	37850	75700	189250	375800	Average
Total electricity consumption for basic treatment (kWh/day)	26	97	180	358	894	1788	
Total electricity consumption for basic treatment (kWh/m ²)	0.006	0.0051	0.0048	0.0047	0.0047	0.047	0,0052
Total electricity consumption for complete	157	463	797	1656	4084	8082	
treatment with chlorination (kWh/day)	157						
Total electricity consumption for complete	0.041	0.024	0.021	0.022	0.022	0.021	0.0050
treatment with chlorination (kWh/m³)	0.041						0,0253
Total electricity consumption for complete	071	1031	1933	3927	9762	19437	
treatment with UV radiation (kWh/day)	271						
Total electricity consumption for complete	0.071	0.054	0.051	0.052	0.052	0.051	0,0553
treatment with UV radiation (kWh/m ³)	0.071	0.054					
Total electricity consumption for complete	40.0	2166	4204	8469	21117	42147	
treatment with Ozonation (kWh/day)	498						
Total electricity consumption for complete	0 101	0.114	0.111	0.112	0.112	0.111	0,1153
treatment with Ozonation (kWh/m ³)	0.131						

출처: : Burton, 1996; Gleik, 2009; Gomez 등(2015)

라. 지하수 정수처리 세부 공정별 에너지 인텐시티

지하수는 일반적으로 지표수에 비해 총용존염(total dissolved salts, TDS)이 적게 함유되어 지하수 처리 세부 공정은 일반적으로 지표수 처리 세부 공정보다 간단하다(EPRI, 2002). 펌프 시스템, 저장 탱크, 소독 탱크로 구성되며, 필요에 따라 용존 가스 제거, 산화, 철 또는 망간 제거를 위한 여과 또는 칼슘 및 마그네슘 이온 제거를 위한 연화 과정이 포함 된다. 이에 따라 지하수 처리는 지표수 처리보다 에너지 소모가 적다(Cooley & Wilkinson, 2012).

마. 담수화 전체 공정 및 세부 공정별 에너지 인텐시티

[표 11]에 나타난 바와 같이 담수화는 총 43개 자료에서 에너지 인텐시티 자료를 검토하였다. 분석 결과 에너지 인텐시티의 평균은 11.963 kWh/m³으로 높은 에너지 인텐시티를 보였다. 최솟값과 최댓값은 각각 0.015 kWh/m³와 142.500 kWh/m³으로 142.486 kWh/m³의 큰 범위를 가진 것으로 확인되었다. 일 사분위수는 1.197 kWh/m³이었으며 삼 사분위수는 5.450 kWh/m³으로 중앙값과 최빈값은 모두 3.170 kWh/m³으로 나타났다. 표준편차, 첨도 및 왜도는 각각 30.761 kWh/m³, 12.528, 3.595로 분석되었다.

담수화는 한 지역의 물 문제를 관리하는 데 중요한 역할을 하는 물 공급을 위한 대체 수 자원이다. 건조하고 물이 부족한 지역에서, 담수화 기술은 용수 공급을 실현 가능하게 하 였다. 새로운 담수화 플랜트는 향상된 기술과 높은 효율성으로 인해 필요한 에너지는 점 차적으로 낮아지고 있으며, 이에 따라 담수화 공정의 평균 전 세계 에너지 인텐시티는 2011년 16 kWh/m³에서 3.0 kWh/m³로 감소하였다(Elimelech & Phillip, 2011). 이와 같이 담수화 기술의 발전으로 공정에 필요한 에너지가 감소했지만, 기존의 지표수 또는 지하 수 처리 방식과 비교할 때 여전히 에너지 집약적인 기술이다. 그럼에도 불구하고 담수화 는 전 세계적으로 점점 증가되고 있는 추세이다.

담수화 에너지 소비량은 발전소 용량, 염도와 같은 원수 수질, 담수화 플랜트 기술에 따 라 달라진다. 담수화에 적용되는 공정은 [그림 45-48]에서와 같이 일반적으로 Multi-stage flash evaporation (MSF), Multiple-effect distillation (MED), Evaporation with mechanical vapor compression (MVC) 또는 Reverse Osmosis (RO)로 분류될 수 있다. 역삼투, 나노여 과, 전기투석 등의 공정에서 소비되는 에너지는 물의 염도에 따라 달라지는 반면 열증류 공정에 필요한 에너지는 원천수의 염도에 무관하다. 역삼투 공정의 최소 에너지 소비량 은 해당 삼투압 이상으로 유입수 흐름을 가압해야 할 필요성에 의해 결정된다. 발전소 용량, 원수 수질 및 적용 기술에 따른 담수화의 에너지 인텐시티는 [표 41]과 [표 42]에 나타난 바와 같다.

그림 45. 전기투석 원리 출처: : Fritzmann 등(2007); Water in the West (2013)

그림 46. 단순 MSF 증류 프로세스 체계 출처: : Fritzmann 등(2007); Water in the West (2013)

그림 47. 다중 효과 증류 프로세스 출처: : NRS (2008); Water in the West (2013)

출처: : NRS (2008); Water in the West (2013)

Item	Technology	Energy Consumption kWh/m ³	Reference
			Bennett et al.
	Reverse osmosis (RO)	0.36-0.47	(2010)
1	Brackish Water (P=15-30 bar)		
	RO for sea water P= 55-70 bar	0.79	Cooley et al.
			(2006)
2	Nanofilteration (B.water)	0.92	NRC (2009)
	Floatro Dialvaia (R. water)		NRC (2009);
3	Electro Dialysis (b. water)	0.5-1.7	Younos & Tulou
	Electrical		(2005)
	Multistage-flash-desalination	26.42-68.69	NRC (2009);
4	Thermal process		Younos & Tulou
	Thermal + electrical	4.7	(2005)
F	Multiple-effect distilation	20 71 105 7	NDC (2000)
	Sea water oldest and effecient	59.71-105.7	NRC (2009)
	Vapor comprossion	7 9-15 85	NRC (2009);
6		7.5 15.65	Younos & Tulou
	Sea water + thermal process		(2005)

표 41. 다양한 담수화 기술의 에너지 소비 #1

출처: : Wakeel 등(2016)

표 42. 다양한 담수화 기술의 에너지 소비 #1 (kWh/m³)

Technology	Plant Capacity	Thermal Energy	Electrical Energy	Operation
Technology	(m ³ /day)	(kWh/m ³)	(kWh/m ³)	Temperature
MSF	4000-450000	55-220	4-6	90-112
MED	100-56000	40-220	1.5-2.5	50-70
MVC	5-17000	-	6-12	50-70
RO	0.01-360000	-	2.8-12	<40

출처: : IDA, 2012; Gomez 등(2015)

2.5.6 배·급수 공정

가. 배·급수 공정 에너지 인텐시티

[표 7]에서와 같이 배·급수 공정은 총 48개의 자료에 근거하여 분석되었으며, 이는 물순환 시스템 공정별 분석에서 가장 많이 수집된 자료 수이다. 평균적으로 배·급수는 0.439 kWh/m³의 에너지 인텐시티가 사용되었다. 표준편차는 0.762 kWh/m³, 중앙값과 최빈값은 각각 0.255 kWh/m³, 0.100 kWh/m³로 분석되었다. 최솟값과 최댓값은 각각 0.010 kWh/m³, 4.900 kWh/m³으로 4.890 kWh/m³의 범위를 보였다. 첨도와 왜도는 각각 25.992, 4.764로 확인되었다.

처리된 용수는 상업용, 산업용, 공공용, 가정용 목적으로 다양한 지역과 거리의 소비자에 게 공급된다. 그리고 [그림 49]에서와 같이 문헌에 기초한 대략적인 인텐시티 값은 유럽 국가들이 아시아 국가들보다 더 에너지 집약적이라는 것을 보여준다.

그림 49. 국가별 도시 급수를 위한 단위당 에너지 소비량

출처: : Sanjuan-Delmas 등(2015)

Sanjuan-Delmas 등(2015)은 [그림 50]에서와 같이 50개 도시의 대표적인 표본을 통계적으 로 분석하여 배·급수 공정에서 에너지 소비와 여러 변수 간의 관계를 분석하였다. 그 결 과는 크기, 위치, 인구밀도가 배·급수 공정에서 상대적인 전기 소비량에 영향을 미칠 수 있음을 보여주었다.

			N	Electricity consumption (kWh/ m ¹ registered water- km of network ¹)	kg CO ₂ emissions/ inhabitant- year	Registered water (m ³ /inhabitant)	Non-registered water (m ³ / m ³ of water registered)
· · · · · ·	Small (< 10.000	μ		1.15E-02**	7.47E+00	7.65E+01	7.30E-01
2	inhabitants)	SEM	31	2.70E-03	2.21E+00	7:90E+00	6.80E-02
SCR	Medium	.μ	-	8-30E-64**	2.37E+00	6.96E+01	6.35E-01
	inhabitants)	SEM	19	2.44E-04	6.25E-01	5.08E+00	7.16E-02
-		μ	40	4 12E-03	3.19E+00	6.19E+01*	6.77E-01
*******	Low (2 1.2)	SEM	24	1.32E-03	6.89E-01	371E+00	5.28E-02
seasonainy	100 C 10 C 10	μ	1.00	1.05E-02	7.69E+00	8.50E+01*	7.10E-01
	suffic (s. 1.4)	SEM	26	3.21E-00	2.62E+00	9:04E+00	8.41E-02
	Low i< 90	μ	14.00	1.31E-02**	8.2ttE+00	7.78E+01	7.67E-01
Population	inhabitants/km ²)	SEM	29	3.24E-03	2.66E+00	9.65E+00	7.87E-02
density	High (2 90	μ.	-	1.79E-03**	2.78E+00	7.00E+01	6.21E-01
	inhabitants/km ³)	SEM	1 20	6.41E-04	7.668-01	4.23E+00	6.01E-02
	Mediterranean	μ		6.00E-03	5.75E+00	7.25E+01	7.07E-01
-gardine		SEM	46	1.96E-03	1.54E+00	4.90E+00	5-38E-02
Climate	Oceanic	μ		1.16E-03	3.00E+00	9.036+01	5.50E-01
		SEM	1	7.25E-04	1.23E+00	3.71E+01	7.15E-02
		μ.		1.326-03**	2.94E+00	1.05E+02	7.58E-01
1000000	Coast	SEM	10	5.86E-04	7.34E-01	2.08E+01	1.37E-01
Location	and the second	μ.	40	8.99E-03**	6.58E+00	6-61E+01	6.78E-01
	invaria	SEM	40	2 22E-03	1.76E+00	3.23E+00	5.31E-02
	1.22	μ		1.106-02	8.16E+00	7.38E+01	7.33E-01
Gross	Low	SEM	19	4 07E-03	3.47E+00	1.05E+01	8.83E-02
capita ³	Constant Street	μ		4 29E-03	4.22E+00	7.30E+01	7.33E-01
	regn	SEM	21	1.94E-03	1.17E+00	5.096+00	8.06E-02
		μ		7.458-03	5.53E+00	7.39€+01	6.94E-01
		SEM		1.63E-03	1.42E+00	5.24E+00	5-01E-02
A	104969	Min.	20	3.70E-06	5.00E-03	3.906+01	1.30E-01
		Max.		7.39E-02	6.78E+01	2.45E+02	1.63E+00

¹p value < 0.05, ¹⁰p value < 0.01 ¹distribution network, ¹value not available for 20% of the municipalities, μ× mean, SEM+ standard error of the mean, Min +Meimum, Max +Maximum.

그림 50. 2011년 군집별 중소도시 표본조사 요약통계

출처: : Sanjuan-Delmas 등(2015)

나. 배·급수 공정 에너지 인텐시티 경험식

Sanjuan-Delmas 등(2015)은 스페인의 50개 도시 데이터를 기반으로 배·급수 공정에서 전 력 소비량을 예측하기 위한 회귀 모델을 제시하였으며, 그 식은 아래 [식 11-12]와 같다. 각 모델의 검증 결과는 [그림 51]에 나타나 있다.

where

EC : electricity consumption

LN : the length of the network (km)

RW : the registered water (m^3)

NI : the number of inhabitants

	Error < 50%		Error < 70%		Error < 90%	
	N	%	N	%	N	%
Model 6	16	32	22	44	36	72

그림 51. 모델 검증 결과

출처: : Sanjuan-Delmas 등(2015)

2.5.7 용수 사용 공정

가. 용수 사용 전체 공정 에너지 인텐시티

[표 7]에서와 같이 용수 사용은 전체 물순환 시스템에서 가장 많은 에너지가 사용되는 공 정이다. 총 4개의 문헌에서 수집된 자료를 통해 분석한 결과, 에너지 인텐시티의 평균과 표준편차는 각각 54.491 kWh/m³, 102.593 kWh/m³으로 분석되었다. 온수 사용 비율, 사용 기간 등 여러 요인에 따라 에너지 인텐시티가 변동되기 때문에 최솟값과 최댓값은 각각 3.160 kWh/m³, 208.380 kWh/m³이었으며, 205.220 kWh/m³의 범위를 가진 것으로 확인되었 다. 같은 맥락으로 일 사분위수와 삼 사분위수는 각각 3.161 kWh/m³, 157.100 kWh/m³으 로 나타났다.

도시 물순환 시스템에서 주거, 산업 및 상업 부문에서 최종 사용 시 에너지 인텐시티가 상대적으로 높은 것으로 확인되었으며, 용수 사용 부문은 도시 물순환 시스템의 에너지 사용의 주요 구성 요소로 식별되었다(Cohen 등, 2004; McMahon & Price, 2011; Plappally & Lienhard, 2012; Siddiqi & Weck, 2013). 예를 들어 캘리포니아 전력의 14%와 천연 가 스의 31%가 물 최종 사용 활동에 소비되고 있는데, 이는 처리 및 공급 과정에 사용되는 전력 소비량의 5%보다 큰 수치이다. 또한 용수 사용에 사용되는 에너지는 캘리포니아의 모든 물 관련 에너지 사용의 95%를 차지하는 것으로 밝혀졌다(Escriva-Bou & Lund, 2018). 또한 도시, 산업 및 자급 부문(농업, 광업, 발전소 등)과 관련된 최종 사용 에너지 요구량이 미국 내 에너지 소비량의 5% 이상을 차지하는 것으로 보고되었다(Webber, 2011). 베이징의 가정용 물 사용에 사용되는 에너지는 베이징 전체 에너지 소비량의 1% 에 달하였다(Chen 등, 2013).

다양한 유형의 에너지(예: 전기, 등유 및 LPG)는 다양한 용도로 가정용 온수 난방(예: 목 욕, 샤워, 손 씻기, 대야, 세탁, 설거지 및 요리)에 사용될 수 있다. 그리고 물의 최종 사 용 시 에너지 소비 또한 다양한 행동 요인에 따라 달라진다. 물 난방에 소비되는 에너지 의 양은 가구 구성, 유입 및 유출 물 온도 및 연료 유형에 따라 달라지며(Aguilar et al., 2005), 온수기의 와트 수 및 효율에 영향을 받을 수 있다. 목욕, 샤워, 설거지, 세탁, 요리 과정에서 선호되는 수돗물 온도(40℃)를 달성하기 위해 사용되는 물의 50%는 가열이 필 요하다고 보고되기도 하였다(Kenway 등, 2008). 또한, 물 난방의 에너지 소비량은 계절과 기후에 따라 달라질 수 있다(Goldner, 1994년).

나. 세부 용수 사용 목적 분류 및 비율

가정에서 물과 에너지, 그리고 음식과 관련된 물질의 이동은 [그림 52]와 [그림 53]과 같 이 나타낼 수 있다. 이 중 용수 사용 시 에너지가 사용되는 부문은 크게 용수 가열(water heating), 식기세척기나 세탁기와 같은 관련 전기제품(wet appliance) 사용, 조경 (landscaping), 및 현장 펌프 사용(on-site pumping)으로 나누어질 수 있다. 그리고 각각의 용수 사용 목적에 따른 용수 사용량은 [표 43]과 [표 44]에 제시된 바와 같다.

그림 52. 가정에서 물-에너지-식량간의 상호 작용

출처: : Hussien 등(2017)

Energy end-use	Appliances
Space heating	Air-conditioner, electrical heater, kerosene heater, gas heater
Space cooling	Air-conditioner, evaporative air-cooler, fan
Lighting	Spot lights, tube lights
Wet appliances	Water pump, dishwasher, clothes washer
Refrigeration appliances	Chest-freezer, fridge-freezer
Electronic appliances	TV, radio, computer, video record, CD/DVD player, Video games
Miscellaneous appliances	Hair dryer, vacuum cleaner, sewing machine, iron
Cooking appliances	Electrical hob, electrical oven, electrical kettle, microwave oven, toaster, gas oven, gas hob

그림 53. 에너지 최종 사용 부문 및 관련 기기

출처: : Hussien 등(2017)

Indoor Application	Residential	Commercial	Industrial
Kitchen	0.15	0.09	-
Showers	0.2	-	-
Faucets	0.1	0.28	-
Toilets	0.34	0.63	-
Laundry	0.21	-	-
Industrial Process	-	-	1

표 43. 가정용 기기별 물 사용 비율

출처: : Siddiqi & Weck (2017)

표 44. 동절기 물 최종사용량 매개변수의 평균값 요약

End was	Demonstern	II : 4	all Survey	Low income	medium income	high income
End-use	Parameters	Unit	Household	households	households	households
Path	Frequency of taking bath per capita per day	bath/day	0.004	0	0	0.01
bath	Volume of water use in each bath	l/bath	132	0	0	132
	Frequency of showering per capita per day	shower/day	0.488	0.34	0.47	0.61
Shower	Duration of each shower	Minutes/shower	8.64	8.87	8.72	8.38
	Flow rate	l/min	9.02	9.48	9.27	8.39
	Frequency of using taps per capita per day	tap uses/day	10.46	9.96	10.31	10.98
Taps	Duration of tap use	Minutes/use (second/use)	1.01 (60.81)	0.97-58.31	1.02-61.02	1.04-62.2
	Flow rate	l/min	8.14	8.13	8.24	8.02
Toilot	Frequency of toilet use per capita per day	flushes/day	4.65	5.39	4.66	4.14
Tollet	Water use in each flush	l/flush	5.51	6.01	5.36	5.38
	Frequency of Washing dishes per day	washes/day	3	3	3	3
Dishwashing	Duration of running water in each wash	minutes/wash	1.47	1.16	1.5	1.64
	Flow rate	l/min	8.36	9.54	8.39	7.54
I accordance	Frequency of laundry per day	washes/day	1.48	0.83	1.46	1.93
	Volume of water per washing cycle	l/washing cycle	167.32	190.02	161.01	160.28
	Frequency of house washing per day	washes/day	0.69	0.51	0.69	0.8
House washing	Duration of each wash	min/wash	2.13	1.79	2.1	2.38
Laundry House washing	Flow rate	l/min	9.8	12.2	9.88	8.12
	Frequency of Vehicle washing per day	washes/day	0.07	0.06	0.1	0.04
Vehicle washing	Duration of each wash	minutes/wash	1.39	1.81	1.34	1.1
Shower Taps Toilet Dishwashing Laundry House washing Vehicle washing Swimming pool Garden watering Cooking	Flow rate	l/min	12.82	12.79	12.75	13.08
Cwimming pool	Frequency of filling swimming pool per day	frequency/day	0.001	0	0	0.002
Swimming poor	Volume of water provide to fill the swimming pool	m ³	36	0	0	36
	Frequency of garden watering per day	watering/day	0.13	0.07	0.14	0.14
Garden watering	Duration of each watering	min/watering	13.01	13.11	11.88	14.49
	Flow rate	l/min	11.67	11.64	11.94	11.34
Cooking	Daily water consumption for	l/p/d	13.66	11.2	12.85	16.33

출처: : Hussien 등(2017)

다. 세부 용수 사용 목적별 에너지 인텐시티 및 특징

에너지 사용량이 많은 주요 세부 용수 사용 목적별(용수 가열, 가전제품 사용, 조경용도, 현장펌프) 조사된 에너지 인텐시티 값은 [표 46]에 제시되어 있으며, 각각의 기술통계 값 은 [표 45]에 제시되어 있다.

	Heating	Wet appliance		Landscaping	On-site pumping
	all	Dishwasher	Clothes washer	Irrigation	
평균	25176.214	22051.430	9444.820	0.000	-
표준 오차	16547.996	-	-	-	-
중앙값	50.000	22051.430	9444.820	0.000	-
일사분위수	35.000	-	-	-	-
삼사분위수	73000.000	-	-	-	-
최빈값	-	-	-	-	-
표준 편차	43781.883	-	-	-	-
분산	1916853295.821	-	-	-	-
첨도	0.176	-	-	-	-
왜도	1.394	-	-	-	-
범위	102973.000	0.000	0.000	0.000	0.000
최솟값	27.000	22051.430	9444.820	0.000	0.000
최댓값	103000.000	22051.430	9444.820	0.000	0.000
	176233.500	22051.430	9444.820	0.000	0.000
관측수	7	1	1	1	0

표 45. 세부 용수 사용 목적별 에너지 인텐시티 기술 통계

표 46. 세부 용수 사용 목적별 에너지 인텐시티

Reference	Region	Heating	Wet appliance		Landscapin g	On-site pumping
		all	Dishwasher	Clothes washer	Irrigation	
Cohen et al. (2004)		103000				
Cohen et al. (2004)		73000				
Pladdally & Lienhard (2012)		73				
Apostolidis (2010)	Australia	50				
Pladdally & Lienhard (2012)	Australia	48.5				
Pladdally & Lienhard (2012)		35				
Rothausen & Conway (2011)		27				
Cohen et al. (2004)			22051.43			
Cohen et al. (2004)				9444.82		
Cohen et al. (2004)					0	

호주 가정 내 용수 최종 사용에 대한 에너지 소비의 97%는 용수 가열이 차지하고 있다 (Nair 등, 2014). 그리고 미국에서는 용수 가열이 주택 부문에서 직접적인 물 관련 에너지 의 75%를 차지하는 것으로 보고되었다(Sanders & Webber, 2015). 이와 같이 미국이 호주 보다 용수 가열에 이용되는 에너지가 용수 사용 에너지에서 비율이 낮은 이유는 온수 수 요의 차이와 용수 가열 기술의 차이 때문이다. 전기온수기는 일차 에너지를 전기 에너지 로 전환하여 많은 에너지를 낭비한다. 전체 연료 사이클 동안 천연 가스 온수기는 약 두 배 더 효율적이라고 보고되었다. Arpke & Hutzler (2006)는 네 가지 가구 유형의 모델링을 통해 물 관련 에너지의 97%가 용수 가열에 기인한다는 것을 보여주었다. Siddiqi & Weck (2013) [그림 54]에서와 같이 이론적 방정식을 이용하여 시나리오에 따른 모델링을 수행하여 빌딩에서 필요한 에너지를 산정하였다. 해당 모델에서 물을 가열하기 위한 에너지는 주변 온도의 시간적 변화로 인해 달라진다. 모델이 적용된 월별 평균 외 부 온도는 [그림 55]에 제시된 바와 같다. 적용된 매개변수 값에 따른 월별 용수 사용 에 너지는 [그림 56]에서 나타난 바와 같이 상당한 차이가 있음을 알 수 있었다. 특정한 수 요 시나리오에 대한 월별 에너지의 변동은 1.69 GWh에서 3.46 GWh 사이이었다.

그림 54. 마스다르시의 실내용수 수요시나리오 모델

출처: : Siddiqi & Weck (2013)

Month	Temperature (°C)	Month	Temperature (°C)
January	17.9	July	34.3
February	19	August	34.4
March	22	September	34.4
April	26.1	October	28.4
May	30.4	November	24
June	32.1	December	19.9

그림 55. 아부다비 월평균 기온(UAE 기후 2012 데이터 기준)

출처: : Siddiqi & Weck (2013)

그림 56. 미스다르시 건축물의 용수사용 월별 에너지 소요량

출처: : Siddiqi & Weck (2013)

온수 사용을 통한 에너지 절약은 기후가 추운 국가들에서 논의의 대상이 되어 왔다 (Kenway 등, 2008).그러나 UAE 등 더운 지역에서도 건물온수관리 개선으로 상당한 에너 지 절감이 가능하다는 것을 알 수 있었다. 모델링된 네 가지 사용 목적(주방, 샤워기, 수 도꼭지, 세탁기)에 다양한 온수 비율을 적용하여, 81개 조합을 시나리오 분석한 결과 온 수사용 수준에 따른 월별 물 사용 난방에너지 변화는 [그림 57]에 나타난 바와 같이 크게 변동이 있음을 알 수 있었다. 그리고 온수 분율 감소의 영향은 12월에서 2월 사이의 추 운 겨울철에 상당하였다.

그림 57. 온수사용량 변화에 따른 온수 나방 에너지 월별 변화

출처: : Siddiqi & Weck (2013)

고층 건물의 경우에서는 현장 펌프 사용에 많은 에너지가 필요하다. 수도사업자는 규정 에 따라 일정수압 이상을 관말에서 유지하여야 하며, 해당 압력은 고층건물의 상층부로 급수하기에는 충분하지 않아 추가적인 펌핑이 필요하다. 이와 같은 추가 펌핑은 일반적 으로 건물 현장에서 수행된다. 또한 건물에 빗물 집수 시스템 또는 현장 물 재활용 장치 와 같은 보조 용수원이 설치된 경우 추가적인 펌핑이 필요하다.

마. 세부 용수 사용 목적별 이론적 에너지 사용

일일 물 난방에 대한 에너지 소비는 [식 13]와 같이 특정 열 공식을 사용하여 계산할 수 있다.

$$Ea_i = Na_i \times Da_i \times Wa_i$$
 수식 13

where

 Ea_i = daily per capita average energy consumption of appliance *i* (kWh/p/d)

 Na_i = average ownership level of appliance i per household

 Da_i = daily per capita average duration of use of appliance *i* (hrs/p/d)

 Wa_i = average wattage of appliance i (Watt)

물을 가열하는 데 사용되는 에너지는 주변 온도, 온수 온도 및 히터 효율에 따라 달라지 며, 그 식은 [식 14], [식 15]과 같다. 주거용에서 뜨거운 물은 부엌 식기세척기, 수도꼭지, 샤워기, 세탁기에 사용되며, 해당 식에서 파이프 단열재는 고려되지 않았다.

$$E_H = rac{V_H
ho c \Delta T}{\eta_h}$$
수식 14

where

 V_H = volume of water heated in the building

 ρ = density of water (1,000 kg/m^3)

c = specific heat capacity of water (4,185 J/kg-K)

 $\Delta\,T$ = temperature difference between ambient and heated water

 η_h = the parameter of the efficiency of the water heater

$$V_H = \sum_{i=1}^{A} \alpha_{h_i} \nu_i$$
 수식 15

where

 ν_i = total volume of water used in application i

 α_{i} = fraction of hot water used in application i

A = total number of applications in which water is used in the building

식을 적용하기 위해 온도, 효율, 온수 적용 비율과 같은 매개변수 값을 설정하여야 한다. 가정용 온수기에서 물을 가열하는 온도는 일반적으로 45-70℃가 적용되고 있다(Cohen 등 2004: Kenway 등 2008). Swan(2010)은 공급 수온이 55℃이고 가열 전 용수의 온도는 연간 평균 토양 온도와 같다고 가정하였다. Hussien 등(2017)은 현장 조사를 통해 가열 전 평 균 수온은 한랭기 동안 약 12℃이며, 가열 후 출구 평균 수온은 62℃로 측정하였다. 가스 가열기의 경우 효율은 일반적으로 50~70%, 전기 가열기의 경우 75~95%로 제시하였다. 주 거용에서는 온수를 사용하는 4가지 분야(부엌, 샤워기, 수도꼭지, 세탁기)가 있으며, Kenway 등(2008)은 주방, 샤워, 수도꼭지, 세탁 과정에서 온수의 사용 비율은 0.6, 0.5, 0.5, 0.5로 제시하였다.

전기 기기의 에너지 소비량을 계산할 때 각 기기의 에너지 소비량은 전체 작동 시간 동 안 일정하게 유지되는 것으로 가정한다. 가정에서 사용 중인 각 기기의 에너지 소비는 소유 수준 함수(예: 주택 보유에서 사용 중인 에어컨 수), 사용 기간 및 와트수로 모델링 된다. 이에 적용되는 매개변수의 값은 [표 47]과 [표 48]을 적용하여 산정할 수 있다.

End-use	Parameters	Unit	all Survey Household	Low income households	medium income households	high income households
	Frequency of taking bath per capita per day	bath/day	0.004	0	0	0.01
Bath	Volume of water use in each bath	l/bath	132	0	0	132
	Frequency of showering per capita per day	shower/day	0.488	0.34	0.47	0.61
Shower	Duration of each shower	Minutes/sh ower	8.64	8.87	8.72	8.38
	Flow rate	l/min	9.02	9.48	9.27	8.39
	Frequency of using taps per capita per day	tap uses/day	10.46	9.96	10.31	10.98
Taps	Duration of tap use	Minutes/use (second/use)	1.01 (60.81)	0.97- 58.31	1.02- 61.02	1.04- 62.2
	Flow rate	l/min	8.14	8.13	8.24	8.02
Toilet	Frequency of toilet use per capita per day	flushes/day	4.65	5.39	4.66	4.14
	Water use in each flush	l/flush	5.51	6.01	5.36	5.38
	Frequency of Washing dishes per day	washes/day	3	3	3	3
Dishwashing	Duration of running water in each wash	minutes/wash	1.47	1.16	1.5	1.64
	Flow rate	l/min	8.36	9.54	8.39	7.54
Loundry	Frequency of laundry per day	washes/day	1.48	0.83	1.46	1.93
Launury	Volume of water per washing cycle	l/washing cycle	167.32	190.02	161.01	160.28
House	Frequency of house washing per day	washes/day	0.69	0.51	0.69	0.8
washing	Duration of each wash	min/wash	2.13	1.79	2.1	2.38
	Flow rate	l/min	9.8	12.2	9.88	8.12
Vehicle	Frequency of Vehicle washing per day	washes/day	0.07	0.06	0.1	0.04
washing	Duration of each wash	minutes/wash	1.39	1.81	1.34	1.1
	Flow rate	l/min	12.82	12.79	12.75	13.08
Swimming	Frequency of filling swimming pool per day	frequency/day	0.001	0	0	0.002
pool	Volume of water provide to fill the swimming pool	m ³	36	0	0	36
Garden	Frequency of garden watering per day	watering/day	0.13	0.07	0.14	0.14
watering	Duration of each watering	min/watering	13.01	13.11	11.88	14.49
	Flow rate	l/min	11.67	11.64	11.94	11.34
Cooking	Daily water consumption for	l/p/d	13.66	11.2	12.85	16.33

표 47. 동절기 물 최종사용량 매개변수의 평균값 요약 (설문조사 자료)

출처: : Hussien 등(2017)

	Applian			All	Low	Medium	High
End-use	Аррнан	Parameters	Unit	Surveyed	income	income	income
	ces			Household	household	households	households
		Number of water pumps in use	No	0 E	0.29	0.72	0.25
	Wator	in a households	INO.	0.5	0.20	0.73	0.35
	water	Duration of use of each water	hng /n /w	0.76	0.62	0.76	0.92
	pumps	pump per capita per week	nns/p/w	0.76	0.62	0.76	0.82
		Wattage of each water pump	Watt	381.48	381.54	397.92	385.63
	Dishwa sher	Number of Dishwashing Machines	No	0	0	0	0
Wet		in use in a households	NO.	0	0	0	0
Appliances		Duration of use of each	hra /n /w				
		dishwasher per capita per week	nns/p/w				
		Wattage of dishwasher	Watt				
		Number of clothes washing	No	0.04	0.75	1	1
	Clothes	machines in use in a household	NO.	0.34	0.75	T	
	Washer	Energy consumption per	Wh (and	0 51	0.22	0.61	0 52
		washing cycle	KW1/Cycle	0.51	0.25	0.01	0.55
	Electric	Total consumption of heated	I/n/d		CE O	00.2E	04.60
Water	al	water per capita per day	1/ p/ d	05.00	05.0	69.35	94.69
Heating	Water	Total energy consumption for	kWb /p /d	4 00	2 02	E 10	5 F 1
	Heater	water heating per capita per day	kwii/p/u	4.33	3.03	5.19	5.51

표 48. 동절기 물 관련 에너지 최종사용 매개변수의 평균값 요약 (설문조사 기반)

*hrs/p/d=hours per person per day

*hrs/p.w=hours per person per week

*I/heater/d=litres per heater per day

*mins/p/d=minutes per person per day
*mins/p/w=minutes per person per week

출처: Hussien 등(2017)

건물 내 물을 펌핑하는 데 필요한 총 에너지는 [식 16], [식 17]과 같이 계산될 수 있다. (Siddiqi & Weck, 2013).

$$E_{p} = e_{p} \left\{ \underbrace{[V_{M} \bullet \max(F+1-f_{M},0)]}_{building height} + \underbrace{V_{RW}F}_{rain water} + \underbrace{V_{WW}F}_{recycled water} \right\} \qquad \dot{\uparrow} 4 16$$

where

 ${\boldsymbol{F}}$: the number of floors in the building

 f_M : the number of floors to which the municipal supplied water can reach without on-site pumping in the building

 γ : the specific weight of water

 e_{p} : the energy (in joules) needed to pump 1 m^{3} of water over one floor of the building

 h_F : floor height

 a_1 : frictional pipe losses

 η_p : pumping efficiency

 $V_{\boldsymbol{M}}$: the volume of municipal water supplied

 V_{RW} : volume of rainwater harvested and supplied

 $V_{\rm WW}$: volume of on-site recycled wastewater

F: the number of floors

2.5.8 하수 집수 공정

하수처리 공정은 11개의 자료를 기반으로 통계 분석하였다. 평균 에너지 인텐시티는 0.181 kWh/m³이었으며 중앙값과 최빈값은 각각 0.061 kWh/m³, 0.710 kWh/m³와 같이 나 타났다. 최솟값은 0.022 kWh/m³, 최댓값은 0.710 kWh/m³으로 분석되며 0.689 kWh/m³의 범위를 보였다. 표준편차, 첨도, 왜도는 각각 0.264 kWh/m³, 1.853, 1.846으로 분석되었다.

2.5.9 하수 처리 공정

가. 하수 처리 세부 공정

하수처리 시 주요 처리 오염물질과 해당 물질을 제거하기 위한 공정은 [그림 58]에 나타 난 바와 같다.

Contaminant	Unit Operation, Unit Process, or Treatment System								
Suspended solids	Screening and comminution Grit removal Sedimentation Filtration Flotation Chemical polymer addition Coagulation/sedimentation								
Biodegradable organics	Activated sludge variations Fixed film reactor: trickling filters Fixed film reactor: rotating biological contactors Membrane bioreactors (MBRs) Lagoon variations Intermittent sand filtration Physical-chemical systems Natural systems (land treatment)								
Dissolved solids	Membranes								
Pathogens	Chlorination Hypochlorination Bromine chloride Ozonation UV Radiation								
Nutrients:									
Nitrogen	Suspended-growth nitrification and denitrification variations Fixed-film nitrification and denitrification variations Ammonia stripping Ion exchange Breakpoint chlorination Natural systems								
Phosphorus	Metal salt addition Lime coagulation/sedimentation Biological phosphorus removal Biological-chemical phosphorus removal Natural systems								
Nitrogen and Phosphorus	Biological nutrient removal Natural systems								

그림 58. 폐수의 주요 오염물질 및 이를 제거하기 위해 사용되는 처리 시스템

출처: : EPRI & WRF(2013)

Treatment unit	Bacteria	Virus	Cryptosporidium	Giardia spp.
Primary sedimentation	(0.50, 0.75, 0.95) (Health Canada 2010)	(0.50, 0.75, 0.95) (Health Canada 2010)	(0.75; 0.87; 0.97) (Health Canada 2010)	(0.25, 0.37, 0.47) (Health Canada 2010)
Trickling filter	(1.50, 1.75, 1.95) (Health Canada 2010)	(1.25, 1.63, 1.92) (Health Canada 2010)	(0.75, 0.87, 0.98) (Health Canada 2010)	(0.75, 0.87, 0.97) (Health Canada 2010)
Activated shudge	(1.50, 1.75, 1.95) (Health Canada, 2010)	(1.25,1.63, 1.92) (EPHC/NHMRC/NRMM C 2008)	(0.75, 0.87, 0.98) (Health Canada 2010)	(0.75, 0.87, 0.97) (Health Canada 2010)
Biological Nutrients Removal (BNR)	(1.50, 1.75, 1.95) (Health Canada 2010)	(1.25.1.63, 1.92) (Health Canada 2010)	(0.75, 0.87, 0.98) (Health Canada 2010)	(0.75, 0.87, 0.97) (Health Canada 2010)
Membrane Bioreactor	(6.10, 6.45, 6.73) (Hai et al. 2014)	(3.25, 4.22, 5.01) (Hai et al. 2014)	(7.00, 7.50, 7.90) (Hai et al. 2014)	(7.00, 7.50, 7.90) (Hai et al. 2014)
Sequencing Batch Reactor	(1.50, 1.75, 1.95) (considered same as Activated Sludge)	(1.25,1.63, 1.92) (considered same as Activated Sludge)	(0.75, 0.87, 0.98) (considered same as Activated Sludge)	(0.75, 0.87, 0.97) (considered same as Activated Shudge)
Coagulation and Flocculation	(2.20, 3.05, 3.73) (Health Canada 2013)	(2.25, 2.82, 3.28) (Health Canada 2011)	(2.05, 2.88, 3.53) (Health Canada 2012); (Hijnen et al., 2010)	(1.65, 2.47, 3.13) (Health Canada 2012)
Microfiltration	(5.00, 5.50, 5.90) (Health Canada 2010); (EPHC/NHMRC/NRMM C 2008)	(4.25, 5.12, 5.82) (if proceed after coagulation) (Health Canada 2010)	(6.20, 7.10, 7.82) (Health Canada 2010)	(6.35, 7.17, 7.83) (Health Canada 2010)
Depth filtration	(2.25, 2.72, 3.10) (Health Canada 2013b)	(1.95, 2.87, 3.61) (Health Canada 2011)	(6.10, 6.45, 6.73) (Health Canada 2012)	(6.10, 6.45, 6.73) (Health Canada 2012)
Surface filtration	(0.50, 0.75, 0.95) (Asano et al. 2007)	(0.25, 0.37, 0.47) (considered half effective to bacteria) (Asano et al. 2007)	(0.50, 0.75, 0.95) (Asano et al. 2007)	(0.50, 0.75, 0.95) (Asano et al. 2007)
Granular Activated Carbon	(0.60, 0.85, 1.05) (Hijnen et al. 2010)	(0.45, 0.57, 0.67) (Hignen et al. 2010)	(2.00, 2.35, 2.63) (Hijnen et al. 2010)	(2.00, 2.35, 2.63) (Hijnen et al. 2010)
Ultrafiltration	(5.0, 5.5.5.9) (Health Canada 2013b)	(4 50, 5 25, 5 85) (Health Canada 2011)	(6.2, 7.10, 7.82) (Health Canada 2012)	(6.35, 7.17, 7.83) (Health Canada 2012)
Reverse osmosis	(5.50, 6.25, 6.85) (Kitis et al. 2003)	(4.85, 5.92, 6.78) (Hai et al. 2014)	(8.00, 8.50, 8.90) (Health Canada 2012)	(8.00, 8.50, 8.90) (Health Canada 2012)
Chlorination	(4.00, 5.00, 5.80) (Health Canada 2010); (Health Canada 200 (EPHC/NHMRC/NRMM C 2008)		(0.75, 1.12, 1.43) (Health Canada 2010)	(0.75, 1.12, 1.43) (Health Canada 2010)
UV radiation	tion (3.0, 3.5, 3.9) (2.12, 3.06, 3.81) (Health (3.5, 3.75, 3.95) (Health Canada 2010); Canada 2010); (Health Canada 2010) (EPHC/NHMRC/NRMM (EPHC/NHMRC/NRMM (EPHC/NHMRC/NRM C 2008) C 2008) MC 2008)		(3.5, 3.75, 3.95) (Health Canada 2010); (EPHC/NHMRC/NRM MC 2008)	(3.5, 3.75, 3.95) (Health Canada 2010);(EPHC/NHMR C/NRMMC 2008)
Ozone	(3.50, 3.90, 4.22) (Xu et al. 2002)	(3.00, 3.50, 3.90) (EPA-Ireland 2011)	(2.00, 2.50, 2.90) (EPA-Ireland 2011)	(2.00, 2.50, 2.90) (EPA-Ireland 2011)

Note: TFN: (l, m, u) refers to (50th, 75th, 95th percentiles)

그림 59. 대체 기술 및 병원체 제거 효율성

출처: : Shrestha(2017)

도시 물순환 시스템에서 사용된 용수는 일차, 이차, 또는 고도 처리 단계로 처리된다. 일 차 처리 과정에는 하수 집수 및 선별, 스크린, 침전 및 화학처리를 포함한다. 일차 처리 는 다른 단계에 비해 에너지 소모가 적고 설계 및 작동에 영향을 주로 받는다. 이차 처 리 과정에는 폭기, 안정화, 미생물 성장 및 막 생물 반응기 과정이 포함되며, 이차 처리 과정에는 하수에서 질소를 20~30%만 제거합니다. 그리고 이 단계에서는 생물학적 처리가 우세하며, 사용되는 에너지양은 기술 수준과 오염에 따라 달라진다. 질산화작용-탈질화 과정의 고도처리에서는 더 높은 질소와 인을 제거할 수 있다. 이와 같은 고도처리과정은 매우 에너지 집약적이다.

그림 61. 하수처리 공정 선정 흐름도

출처: Shrestha(2017)

중정 요금도 출처: EPRI & WRF (2013)

하수처리 공정에서 발생되는 슬러지를 처리하기 위한 세부 공정들 및 절차와 해당 세부 공정들에서 에너지가 사용되는 부분에 대한 설명은 [그림 63-65]에 설명되어 있다.

출처: EPRI & WRF (2013)

Processing or Disposal Function	Unit Operation, Unit Process, or Treatment Method	Impact on Electricity Use				
Preliminary operations	Pumping Grinding Degritting Solids blending and storage	Moderate Small Small Small				
Thickening	Gravity thickening Flotation thickening Centrifugation Gravity belt thickening	Small Moderate Moderate Small				
Stabilization	Lime stabilization Heat treatment Anaerobic digestion Aerobic digestion Composting: Windrow Aerated static pile In-vessel	Small/moderate Significant Small/moderate Moderate/significant Small Moderate Significant				
Conditioning	Chemical conditioning Heat treatment	Small Significant				
Disinfection	Pasteurization Long term storage	Moderate Small				
Dewatering	Vacuum filter Centrifuge Belt press filter Filter press Biosolids drying beds Lagoons	Significant Significant Small/moderate Moderate/significant Small Small				
Heat drying	Dryer variations Multiple effect evaporator	Moderate Significant				
Thermal reduction	Incineration Wet air oxidation	Significant when used ²² Significant when used ²³				
Ultimate disposal	Land application Landfill Lagooning Chemical fixation	Small Small Small Moderate				

그림 65. 고체 처리 및 폐기 방법

출처: EPRI & WRF (2013)

나. 하수처리 전체 공정 에너지 인텐시티

31개의 자료를 토대로 하수처리 공정의 에너지 인텐시티는 평균 0.494 kWh/m³, 표준편차 는 0.246 kWh/m³으로 분석되었다. 일 사분위수와 삼 사분위수는 각각 0.300 kWh/m³, 0.711 kWh/m³이었으며, 중앙값과 최빈값은 각각 0.440 kWh/m³, 0.410 kWh/m³로 확인되었 다.

하수 처리 공정의 운영 에너지 소비를 계산하기 위해 조사한 결과 에너지 사용의 94%가 폐수 처리 공장의 운영 단계에 기인한다는 보고되었다(Racoviceanu 등, 2007; Friedrich, 2002). 하수 처리 시스템의 연간 총 사용량 추정치 30.2TWh는 미국 전체 전기 사용량의 0.8%에 해당하며, 1996년 첫 EPRI 추정치인 연간 17.4TWh에 비해 74%가 증가한 수치이 다(EPRI & WRF, 2013).

EPRI & WRF(2013)는 하수 처리 시설의 용량에 따른 에너지 인텐시티를 [표 49]와 같이 제시하였다. 해당 결과에서 용량이 작은 하수처리시설의 에너지 인텐시티는 높은 값을 나타내었지만, 용량이 일정한 값 이상일 경우에는 에너지 인텐시티의 변동이 없는 것으 로 나타났다. 따라서 다른 요인의 고려가 필요하지만 에너지 관점에서 하수처리 시설은 중앙 집중적인 방식이 효율적임을 알 수 있었다. 또한 하수처리 시설의 용량이 클수록 현장에서 회수 가능한 에너지 또한 증가함을 확인 할 수 있었다.

Average Daily	Energy Use	Average	Generating	Predominant Treatment Processes							
Flow Range (MGD)	Intensity (kWh/MG)	Effluent BOD (mg/L)	Electricity Onsite (%)	Secondary treatment	% Nitrifying	Biosolids Disposal					
< 2	3,300	7.3	10	Mechanical aeration	68%	Land application					
2-4	3,000	6.7	14 Fine Bubble		66%	Land application					
4-7	2,400	7.5	7	Fine Bubble	59%	Land application					
7-16	2,000	6.5	45	Fine Bubble	59%	Land application					
16-46	1,700	7.2	39	Fine Bubble	61%	Landfills					
46-100	1,700	12.2	44	Fine Bubble	33%	Land application					
101-330	1,600	11.5	18	Fine Bubble	46%	Land application					

표 49. 폐수시스템 매개변수에 대한 가중평균값

출처: EPRI & WRF (2013)

Christoforidou 등(2020)은 그리스의 61개 하수처리 시설에서 운영 및 기술 데이터를 수집 하여 분석한 결과 [그림 66]과 [표 50]에서와 같이 에너지 인텐시티는 0.2에서 2.0 kWh/m³의 범위에 있음을 보여주었다. 그리고 큰 규모의 하수처리장이 운영 및 에너지 효 율 측면에서 가장 효율적이라는 사실이 다시 한 번 확인하였다.

표 50. 에너지 인텐시티 및 유기부하제거에 따른 공정별 에너지성능 평가

Treatment Process	kWh/m ³	kWh/PE.yr	kWh/kg COD remode
Extended Aeration	1.26	81.1	0.95
CAS	0.88	43.8	1.00
Oxidation ditch	0.75	47.1	0.58
Constructed Wetland	0.05	7.8	0.07

출처: Christoforidou 등(2020)

다. 하수처리 세부 공정별 에너지 인텐시티

일차, 이차, 고도 처리 단계에서 소비되는 에너지의 양은 하수처리장의 규모와 위치, 수 질, 불순물 유형, 서비스 인구, 하수처리 세부 공정 유형, 배출수 기준, 하수처리장 효율 등에 따라 다르다. 본 연구에서는 일차처리 전체(primary treatment all), 스크린(screening & grit removal) 1차 침전조(primary sedimentation), 이차처리 전체(secondary treatment all), 라군(lagoon), 활성 슬러지(activated sludge), 산화구(oxidation ditch), 살수여상 (trickling filter), MBR(membrane bio-reactor), 여과(Filtration), 고도처리 전체(tertiary treatment all), 역삼투압(reverse osmos), 염소 소독(disinfection chlorine), UV 소독 (disinfection UV)로 분류하였다.

분류된 각 공정별로 기존 문헌에서 제시한 에너지 인텐시티는 [표 51]에 나타난바와 같으 며, 각 공정별 에너지 인텐시티의 기술통계 값은 [표 52]에 정리되어 있다. 개별 문헌들 중 대표적인 에너지 인텐시티 값은 [표 53-55] 및 [그림 67]에 정리되어 있다.

일차처리 전체, 이차처리 전체 및 고도처리 전체의 에너지 인텐시티 중위값은 각각 0.022 kWh/m³, 0.020 kWh/m³, 0.417 kWh/m³의 값을 나타내었다. 고도처리 공정은 일차처리 및 이차처리에 비해 높은 중위 값을 나타내었다. 이차처리의 경우 일반적으로 필요하다라고 고려되는 에너지에 비해 매우 적은 에너지 인텐시티를 나타내었다. 이 값은 이차 처리의 개별 공정 (라군, 활성 슬러지, 산화구, 살수여상, MBR)에 중위 값보다 매우 적은 값을 나타내어서, 이차처리의 에너지를 매우 적게 필요 하는 하수처리장의 자료가 포함된 것으 로 판단된다. 일차처리 전체, 이차처리 전체 및 삼차처리 전체의 에너지 인텐시티 평균값 을 살펴보면 각각 0.071 kWh/m³, 0.218 kWh/m³, 0.578 kWh/m³의 값을 나타내었으며, 이 와 같은 경우에는 에너지 인텐시티의 평균값이 중위값 보다는 더 합리적인 것으로 판단 되었다. 이에 따라 조사된 에너지 인텐시티 결과를 분석할 경우, 기존 문헌에서 제시된 값들의 정확한 상황을 이해하는 것이 중요하다.

이차처리에 주로 활용되는 라군, 활성 슬러지, 산화구, 살수여상, MBR의 에너지 인텐시티 중위값은 각각 0.222 kWh/m³, 0.285 kWh/m³, 0.750 kWh/m³, 0.190 kWh/m³, 0.850 kWh/m³ 의 값을 나타내었다. MBR이 가장 에너지 집약적인 공정임을 알 수 있었으며, 산화구 역 시 많은 에너지를 필요로 하였다.

고도처리의 주요 공정에 대한 자료는 기존 문헌에서 충분히 제시되지 않았으며, RO의 경 우 0.419 kWh/m³의 에너지 인텐시티 중위값을 나타내었다.

표 51. 하수처리 세부 공정별 에너지 인텐시티 기술통계

	Primary treatment	Screening & grit removal	Primary sediment ation	Secondary treatment						Filtration	Tertiary treatment		Disinfecti on	
				all	Lagoon	Activated sludge	Oxidation ditch	Trickling filter	MBR		all	RO	Chlorine	UV
평균	0.071	-	0.045	0.218	0.222	0.335	0.767	0.192	0.816	0.216	0.578	0.419	0.010	0.084
표준 오차	0.023	-	0.015	0.125	0.032	0.072	0.274	0.044	0.199	0.000	0.210	0.000	-	0.000
중앙값	0.022	-	0.045	0.020	0.222	0.285	0.750	0.190	0.850	0.216	0.415	0.419	0.010	0.084
최빈값	0.010	-	-	0.020	-	-	-	0.180	-	0.216	0.780	0.419	-	0.084
일사분위수	0.010	-	-	0.020	-	0.062	0.302	0.019	0.395	-	0.033	-	-	-
삼사분위수	0.153	-	-	0.348	-	0.496	1.250	0.291	1.220	-	0.522	-	-	-
표준 편차	0.084	-	0.021	0.395	0.045	0.305	0.474	0.163	0.445	0.000	1.070	0.000	-	0.000
분산	0.007	-	0.000	0.156	0.002	0.093	0.225	0.027	0.198	0.000	1.146	0.000	-	0.000
첨도	-0.402	-	-	6.324	-	1.072	-	-0.593	-0.681	-	17.610	-	-	-
왜도	1.121	-	-	2.455	-	1.103	0.164	0.471	0.448	-	3.996	-	-	-
범위	0.225	0.000	0.030	1.240	0.063	1.092	0.948	0.478	1.115	0.000	5.387	0.000	0.000	0.000
최솟값	0.010	0.000	0.030	0.020	0.190	0.003	0.302	0.002	0.330	0.216	0.003	0.419	0.010	0.084
최댓값	0.235	0.000	0.060	1.260	0.253	1.095	1.250	0.480	1.445	0.216	5.390	0.419	0.010	0.084
관측수	13	0	2	10	2	18	3	14	5	2	26	2	1	2

표 52. 7	하수처리	세부	공정별	에너지	인텐시티
---------	------	----	-----	-----	------

Reference	Region	Primary treatment	Screening & grit removal	Primary sedime ntation	Secondary treatment						Filtration	Tertiary treatment		Disinfe ction	
					all	Lagoon	Activated sludge	Oxidation ditch	Trickling filter	MBR		all	RO	Chlorine	UV
100, 118, 150	Australia	0.235													
54	Arabia n Gulf	0.2													
Kenway (2008)	Australia	0.19													
2, 99	N e w Zealand	0.115													
2, 99	Canada	0.06													
150, 152, 153, 154	US	0.04													
152	Califor nia, US	0.0215													
		0.01													
		0.01													
		0.01													
		0.01													
		0.01													
		0.01													
Klein et al. (2005)				0.06											
Klein et al. (2005)				0.03											
Christoforidou et al. (2020)					1.26										
54	Arabia n Gulf				0.431										
Porse et al. (2020)					0.32										
Christoforidou et al. (2020)					0.05										
					0.02										
					0.02										
					0.02										
					0.02										
					0.02										
					0.02										
26	China					0.253									
150, 152, 153, 154	US					0.19									
150	Japan						1.095								

Reference	Region	Primary treatment	Screening & grit removal	Primary sedime ntation	Secondary treatment						Filtration	Tertiary treatment		Disinfe ction	
					all	Lagoon	Activated sludge	Oxidation ditch	Trickling filter	MBR		all	RO	Chlorine	UV
Christoforidou et al. (2020)							0.88								
WEF (2009)							0.591								
							0.59								
150, 152, 153, 154	US						0.465								
Klein et al. (2005) Cohen et al. (2004) Kneppers (2009) Maas (2009) Kenway et al. (2008) Navigant Consulting, inc. (2006)							0.395								
							0.36								
							0.32								
							0.29								
							0.28								
							0.27								
26	China						0.269								
100, 118, 150	Australia						0.1								
WEF (2009)							0.072								
WEF (2009)							0.032								
WEF (2009)							0.015								
WEF (2009)							0.006								
WEF (2009)							0.003								
150	Japan							1.25							
Christoforidou et al. (2020)								0.75							
26	China							0.302							
									0.48						
WEF (2009)									0.478						
EPA(2008)	US								0.3						
Klein et al. (2005) Cohen et al. (2004) Kneppers (2009) Maas (2009) Kenway et al. (2008) Navigant Consulting,									0.2875						

Reference	Region	Primary treatment	Screening & grit removal	Primary sedime ntation	Secondary treatment						Filtration	Tertiary treatment		Disinfe ction	
					all	Lagoon	Activated sludge	Oxidation ditch	Trickling filter	MBR		all	RO	Chlorine	UV
inc. (2006)															
									0.26						
									0.23						
									0.2						
									0.18						
									0.18						
WEF (2009)									0.052						
WEF (2009)									0.023						
WEF (2009)									0.008						
WEF (2009)									0.004						
WEF (2009)									0.002						
Porse et al. (2020)										1.445					
150, 152, 153, 154	US									0.995					
150, 152, 153, 154	US									0.85					
100, 118, 150	Australia									0.46					
26	China									0.33					
GEI Consultants & NC (2010)	US, Southland										0.2155				
GEI Consultants & NC (2010)	US, Statewide										0.2155				
100, 118, 150	Australia											5.39			
150	Japan											2.065			
WEF (2009)												0.78			
												0.78			
WEF (2009)												0.686			
Klein et al. (2005) Cohen et al. (2004) Kneppers (2009) Maas (2009) Kenway et al. (2008) Navigant Consulting, inc. (2006)												0.5595			
												0.51			
2, 99	N e w Zealand											0.49			
												0.47			
Porse et al. (2020)												0.465			

Reference	Region	Primary treatment	Screening & grit removal	Primary sedime ntation	Secondary treatment						Filtration	Tertiary treatment		Disinfe ction	
					all	Lagoon	Activated sludge	Oxidation ditch	Trickling filter	MBR		all	RO	Chlorine	UV
Klein et al. (2005) Cohen et al. (2004) Kneppers (2009) Maas (2009) Kenway et al. (2008) Navigant Consulting, inc. (2006)												0.464			
												0.44			
149	Taiwan											0.42			
												0.41			
Quantum Consulting (2001) EPA(2008)	US											0.355			
WEF (2009)												0.102			
WEF (2009)												0.083			
WEF (2009)												0.047			
WEF (2009)												0.037			
WEF (2009)												0.022			
WEF (2009)												0.017			
WEF (2009)												0.008			
WEF (2009)												0.006			
WEF (2009)												0.004			
GEI Consultants & NC (2010)	US, Southland											0.005	0.419		
GEI Consultants & NC (2010)	US, Statewide												0.419		
Klein et al. (2005)														0.01	
GEI Consultants & NC (2010)	US, Southland														0.084
GEI Consultants & NC (2010)	US, Statewide														0.084

표 53. 하수처리 공정에 따른 에너지 사용량

Type of Treatment	Electrical Energy Intensity (kWh/m ³)	Total Treated (m ³ /day)	Electricity Estimate (kWh/d)						
Less than secondary	0.198	1597443	316,500						
Secondary	0.549	49747858	27,335,360						
Greater than Secondary	0.711	63504038	45,127,500						
No Discharge	0.711	6870519	5,372,400						
Pumping Reuse	0.338	13248935	4,480,000						
Partial	0.219	719228	157,700						
	Total per day		82,789,400						
	30.2 TWh								
Percentage of total U. S. Electricity used in 2011 0.8%									
Value alteria d from the easter more From dation; floor date from U.C. FDA Class Without A Need Common 0000									

Value obtained from the water reuse Foundation; flow data from U, S, EPA Clean Watershed Need Survey, 2008

출처: EPRI & WRF (2013)

	Primary					Tertion	
Region	Treatment		Secondary	treatment kWh/m ³		Treatment	Reference
	(kWh/m ³)					meannen	
	Energy	Lagoons	Oxidation ditch	Conventional activated sludge treatment	Membrane bioreactors	Energy	
							Maas (2009);
Canada	0.02-0.1	N/A	N/A	N/A	N/A	N/A	Kneppers et
							al. (2009)
California	0.003-0.04	N/A	N/A	N/A	N/A	N/A	CEC (2006)
US	0.04	0.09-0.2 N/A 0.33-0.60 0.8-0.9: N/A		Radcliffe (2004); CEC (2006); NEEA			
		9			0.45-1.5		(2001), Lesjean & Luck (2011)
Australia	0.1-0.37	N/A	0.5-1	0.1 (avg)	0.10-0.82	0.23-10.55	WEF (2010); Kenway et al. (2008); Radcliffe (2004)
New Zealand	0.04-0.19	N/A	N/A	N/A	N/A	0.49	Maas (2009); Kneppers et al. (2009)
China	N/A	0.253 (avg)	0.302	0.269	0.33 (avg)	N/A	Yang et al. (2010)
Japan	N/A	N/A	0.43-2.07	0.3-1.89	N/A	0.39-3.74	Radcliffe (2004)
Taiwan	N/A	N/A	N/A	N/A	N/A	0.41	Mizuta & Shimada (2010)

표 54. 하수처리 시 에너지 소비량

출처: Wakeel 등(2016)

T	A	Ch in a	LICA	I	Defense ve
Ireatment	Australia	China	USA	Japan	Reference
Lagoong		0.253 (200)	0.09-0.29		Yang L, 2010. (Quantum Consulting,
Lagoons		0.233 (avg)	0.05 0.25		2001)
Astimated aludas	0.1 (ovg)	0.269 (200	0.33-0.6	0.20-1.80	(WEF, 2010). (Yang L, 2010)]. (Mizuta
	0.1 (avg)	0.203 (avg)		0.30-1.69	К, 2010).
Oxidation ditch	0.5-1.0	0.302		0.43-2.07	(Yang L, 2010)]. (Mizuta K, 2010).
Membrane	0 10 0 02	0.22 (2007)	0.8-0.9;		(WEF, 2010). (Yang L, 2010). (Lesjean
Bio-reactor	0.10-0.82	0.33 (avg)	0.49-1.5		B, 2011)
trialing filter			0 10 0 40		(Quantum Consulting, 2001). (EPA,
tricking niter			0.16-0.42		2008)
Advance					(Our sections Commulting 2001) (ED)
wastewater			0.31-0.40		(Quantum Consulting, 2001). (EPA,
treatment					2008) (Metcalf L, 1979).

표 55. 2차 하수처리의 에너지 인텐시티 (kWh/m³)

출처: Gomez 등(2015)

Fig. 6. Comparison of electricity intensity for typical wastewater treatment processes. Trickling filter, activated sludge, oxidation ditch, MBR and A2O are biological wastewater treatment processes, whereas MF, UF and RO are membrane-based separation processes. The energy intensities for MF, UF and RO are based on treatment of wastewater with total dissolved solid concentration between 800 and 1200 mg/L Data sources: ^a[82]; ^b[83]; ^c[84]; ^d[30]; ^e[69]; ^f[16].

그림 67. 대표적인 하수처리 공정별 에너지 인텐시티 비교

출처: Lee 등(2017)

용량에 따른 하수 처리의 전기 소비량은 [표 56], [표 57] 또는 [식 18], [식 19]을 활용하 여 계산할 수 있다. EPRI & WRF (2013)는 다양한 평균 유량에 대해 하수처리 단위 프로 세스에 대한 에너지 인텐시티 값을 [표 58]에서와 같이 제시하였다.

Treatment Diant	Average (m3/day)							
	3785	18927	37854	75708	189271	378541		
Trickling Filter	0.478	0.052	0.023	0.008	0.004	0.002		
Activated Sludge	0.591	0.072	0.032	0.015	0.006	0.003		
Advanced Treatment without Nitrification	0.686	0.083	0.037	0.017	0.006	0.003		
Advanced Treatment with Nitrification	0.780	0.102	0.047	0.022	0.008	0.004		

표 56. 각종 하수처리시설의 평균 에너지 인텐시티 추정치

출처: : WEF(2009)

표 57. 하수처리장 규모별 단위 에너지 소비량

	Unit Electricity Consumption (kWh/m ³)								
Treatment Plant size	Only			activated	Activated	Advanced			
categories (m ³ /day)	primary	Aerated	Tickling	Sludge with	Sludge without	wastewater			
	treatment	basins	Filter	nutrients	nutrients	treatment with			
	ucutilicité			removal	removal	nitrification			
x≤3785	0.01	0.02	0.48	0.59	0.59	0.78			
3785 <x≤18925< td=""><td>0.01</td><td>0.02</td><td>0.26</td><td>0.36</td><td>0.36</td><td>0.51</td></x≤18925<>	0.01	0.02	0.26	0.36	0.36	0.51			
$18925 < x \le 37850$	0.01	0.02	0.23	0.32	0.32	0.47			
$37850 < x \le 75700$	0.01	0.02	0.20	0.29	0.29	0.44			
75700 <x≤189250< td=""><td>0.01</td><td>0.02</td><td>0.18</td><td>0.28</td><td>0.28</td><td>0.42</td></x≤189250<>	0.01	0.02	0.18	0.28	0.28	0.42			
x>189250	0.01	0.02	0.18	0.27	0.27	0.41			

출처: Gomez 등(2015)

$$Capacity_{WWTP}(PE) = BOD_5 \left(\frac{1000kgO_2}{day}\right) \cdot \frac{1PE}{0.06kgO_2/day}$$
 수식 18

where

 $Capacity_{WWTP}$ = Wastewater treatment plant capacity in Population Equivalent (PE)

 $BOD_5 = \text{five days biochemical oxygen demand } \left(\frac{1000 kg O2}{day}\right)$ According to directive $91/271/EEC: 1P.E \rightarrow BOD_5 = 60 \frac{gO_2}{day}$

$$Capacity_{WWTP}\left(\frac{m^{3}}{day}\right) = Capacity_{WWTP}(PE) \cdot WW_{Influent}\left(\frac{m^{3}}{PE \cdot day}\right)$$
 수식 19

where

 $Capacity_{WWTP} = \text{Wastewater treatment plant capacity} \left(\frac{m^3}{day} \text{ or } PE\right)$ $WW_{Influent} = \text{Wastewater Influent or volume of wastewater treated in a wastewater}$ $\text{treatment plant per day and} PE\left(\frac{m^3}{PE \cdot day}\right)$

		Average plant Flow							
	Unit Process	3785	18927	37854	75708	189271	378541	946353	
Wa	stewater pumping	0.058	0.058	0.058	0.058	0.058	0.058	0.000	
	Grit removal, aerated	0.040	0.032	0.041	0.066	0.063	0.058	0.055	
Primary	Grit removal. forced								
Treatmen	vortex	0.034	0.008	0.007	0.004	0.004	0.004	0.004	
t	Primary clarifiers	0.042	0.011	0.006	0.003	0.002	0.002	0.002	
	Ballasted Sedimentation	0.020	0.020	0.020	0.020	0.020	0.020	0.018	
	Trickling Filters	0.166	0.134	0.134	0.134	0.134	0.134	0.134	
	Biological nutrient removal	0.000	0.000	0.000	0.000	0.007	0.000	0.005	
Secondar	mixing	0.029	0.029	0.029	0.028	0.027	0.029	0.025	
Jecondar	Aeration without								
у	nitrification	0.190	0.190	0.190	0.183	0.177	0.167	0.162	
Treatmen	Aeration with nitrification	0.285	0.285	0.285	0.273	0.265	0.251	0.243	
t	Secondary clarifiers	0.022	0.018	0.018	0.018	0.019	0.018	0.019	
	sequencing batch reactors	0.288	0.288	0.288	0.277	0.268	N/A	N/A	
	Membrane bioreactors	0.713	0.715	0.715	0.715	0.715	N/A	N/A	
	Aerobic digestion	0.000	0.000	0.000	N/A	N/A	N/A	N/A	
~	Anaerobic digestion	N/A	0.029	0.029	0.028	0.026	0.026	0.026	
Solids	Gravity belt thickener	0.008	0.007	0.006	0.006	0.006	0.006	0.006	
Handling	Dissolved air flotation	N/A	N/A	0.048	0.039	0.033	0.031	0.047	
Treatmen	centrifuge thickening	0.021	0.015	0.010	0.010	0.010	0.010	0.010	
t &	Belt filter press	0.000	0.012	0.012	0.009	0.007	0.007	0.005	
Disposal	Screw press	0.005	0.005	0.004	0.004	0.003	0.003	0.003	
Disposui	centrifuge dewatering	0.069	0.069	0.069	0.069	0.069	0.069	0.069	
	Thermal drying	0.058	0.058	0.058	0.058	N/A	N/A	N/A	
Filtration	UV disinfection	0.059	0.062	0.062	0.062	0.062	0.062	0.062	
&	Depth Filtration	0.026	0.018	0.015	0.015	0.015	0.015	0.015	
Disinfectio	Surface Filtration (e.g. doth								
n	filters)	0.013	0.009	0.008	0.008	0.024	0.008	0.008	
		0.012	0.012	0.011	0.011	0.011	0.011	0.011	
Nonproces	is loads (Building lighting	0.012	0.012	0.011	0.011	0.011	0.011	0.011	
COMPL	tora proumatica ota)	0.079	0.063	0.055	0.048	0.048	0.048	0.048	
Compt	iters, prieumatics, etc)							0.076	
Energy recov	very (from biogas combution)	N/A	0.076	0.076	0.076	0.076	0.076	0.070	

표 58. 하수처리장 단위공정별 에너지 인텐시티 추정치 (kWh/m³)

a) Some plant with flows in excess of 50 MGD use sidestream treatment to reduce aeration cost; these plants should reduce the electric energy intensity values by approximately 25%

b) N/A = Not applicable; generally pertains to unit processes not commonly found in plants of given flow (e.g., sequencing btach reactor are not used in plants wit average flows in excess of 50 (MGD)

c) Energy recovery values are reduction in energy use: values are based on assumption of using conventional internal combustion engine burning biogas after treatment; alternative generation technologies may improve these estimates

출처: EPRI & WRF (2013)

단위 로그 제거 당 에너지 인텐시티는 [그림 68]에서와 같이 처리 공정에 따라 매우 다른 값을 나타내었다. 그리고 동일한 처리 공정 내에서도 시설용량에 따라 매우 가변적이다 (Shestha, 2017). 그러나 일정용량 이후에는 일정한 값을 나타내는 경향을 나타내었다.

그림 68. 처리기술별 단위 로그 제거 시 에너지 인텐시티 출처: Shrestha (2017)

뀨	59.	다위	로그	제거	닻	에너지	인테시티	스
	00.	1.11			0	11-12-1	2 2 1 1 1	

WW treatment technologies	Energy Intensity (kWh/Log removal/m ³)	R ²
Trickling Filter	0.2197 $x^{0.088}$	0.79
Activated Sludge	$0.2972x^{0.088}$	0.80
Biological Nutrients Removal	$3.8798x^{0.29}$	0.88
Membrane Bioreactor	$0.1096 x^{0.0016}$	0.74
Sequencing Batch Reactor	$6.2557 x^{-0.347}$	0.90
Coagulation and Flocculation	$0.3435x^{0.423}$	0.92
Depth Filtration	$0.17 x^{0.324}$	0.89
Surface Filtration	$0.3308x^{0.235}$	0.88
Ultrafiltration	_	-
Granulated Activated Carbon	-	-
Electrodialysis	-	-
Reverse Osmosis	-	-
Chlorination	-	-
Ozone	$12.077 x^{-0.598}$	0.96

출처: Shrestha (2017)

2.5.10 재이용 공정

가. 재이용 현황 및 경향

하수와 하수 처리수에 대한 지역 사회 및 환경적 우려와 수자원의 부족으로 인해 선진국 은 농업 관개, 비음용 사용 및 음용 목적으로 물 재이용을 하나의 대안을 고려하게 되었 다. 2011년 전 세계적으로 7000 Mm³/년의 재사용수가 사용되었으며 이는 전체 물 사용량 의 0.59%를 차지하며, [표 60]에 국가별 재이용 목적인 재이용량이 설명되어 있다. 60개국 이상의 국가에서 다양한 용도로 재사용수를 적용하고 있으며(Angelakis & Gikas, 2014), 나미비아와 싱가포르에서는 음용 재사용이 시행되고 있지만 대부분의 경우 비음용 재사 용은 일반적이다. 특히 농업 관개는 전 세계 재이용수의 32%를 사용하는 주요 응용 분야 이다. 다른 가능한 물 재사용으로는 조경(20%), 산업용(19%), 도시용(8%), 간접 음용(2%), 기타(2%)가 있다(EU, 2016; Lautze 등, 2014). 물의 재사용과 재활용은 물을 절약하기 위 한 긍정적인 환경 계획이지만, 해당 공정은 에너지 집약적이다.

Country	Reuse Mm³/yr	% of WW reused	Major Application	Reference
World	26.000 in 2030	1.66 in 2030*		EU (2016)
North & Latin America				
United States	3850	-	-	Angelakis & Gikas (2014)
California (US)	1271	-	AI, LL, GWR	Asano et al. (2007)
Florida (US)	834	54	IU, RI, WH	Asano et al. (2007)
Canada (BC)	-	3	AI	Schsefes et al (2004)
Mexico	350,000ha		AI	Crook et al (2005)
EU	1100	24		EU (2016); EU (2015)
Spain	347	-10		Crook et al (2005); EU (2015),2016)
Italy	233	-8	AL, IU,	Crook et al (2005); EU (2015),2016)
Cyprus	20	100	TF,LL, PIPU,	EU (2015,2016)
Germany	42	-1	RI	Crook et al (2005); EU (2015, 2016)
Malta	-4	-78		Crook et al (2005); EU (2015,2016)
Australia	300	168		DSEWPaC (2012)
	63	9.8		DSEWPaC (2012)
New South Wales Victoria	100	24.1		-
Queensiand	71	23.7		-
South Australia	22	28.1	LL, TF, AL,	-
Western Australia Tasmania	19	12.0	SL, IU, VW,	-
	3	6.2	CU, ENV	-
Northern Territory	1.5	6.0		-
Autralia Capital Territory	3.5	13.3		-
Middle East				
Israel	300	-80	AL, GWR	Crook et al (2005): Angelakis &

표 60. 전세계 물 재이용 현황

Country	Reuse Mm³/yr	% of WW reused	Major Application	Reference
				Gikas (2014)
Qatar	760	-	AI, LI	MDPS (2016)
Iran	70	5	AI	Crook et al (2005)
Kwait	52	-	AI, LI	Crook et al (2005)
United Arab Emirates	500	20	AI, LI	Crook et al (2005)
Saudi Arabia	657	10	AI, LI, IU	Drewes et al (2012): WHO (2005): Crook et
				al (2005)
Asia				
China	7373	9.2	IU, LL, AL, TF	Zhou et al (2011)
Japan	187	-	TF, IU ENV, AL	Crook et al (2005)
Korea	157	4**	IU, TF, CL	Crook et al (2005)
Singapore	27	-	DW, (2.5%) & NPW	Angelakis & Gikas (2014)
Pakistan	-	80	AI@	Crook et al (2005)
Southern Africa				
South Africa	-45	3		Crook et al (2005)
Nambia	7.67	4**	DW blending	WABAG (2016); Crook el al (2005)

*Mm³/yr unless stated *% pf total water use *% of water supply @Little or no treatment AI= Agriculture Irrigation, LI= Landscape irrigation, GWR= Groundwater Recharge, IU= Industrial Use, RI= Recreational., WH= Wildlife Habitat, TF= Toilet Flushing, PIPU= Planned Indirect Possible Use, SI= Salviculture, VW= Vehicle washing, CU= Constituctional Use, ENV= Environmental Application, CL= Cleaning, DW= Drinking water, NPW= Non potable water

출처: Shrestha (2017)

나. 재이용 공정 에너지 인텐시티

[표 7]에서 나타난 바와 같이, 13개의 자료를 분석한 결과 물 재이용의 평균 에너지 인텐 시티는 1.072 kWh/m³로 파악되었다. 중앙값과 최빈값은 모두 0.820 kWh/m³로 평균대비 높은 값을 가진 것으로 확인되었다. 표준편차는 0.860 kWh/m³로 확인되었으며, 첨도와 왜도는 각각 1.969, 1.608로 나타났다. 최솟값은 0.215 kWh/m³, 최댓값은 3.162 kWh/m³로 확인되며 큰 범위를 보이지 않았다.

이스라엘과 싱가포르는 각각 하수의 87%와 50%를 재활용하며, 해당 공정에서 0.72에서 0.93 kWh/m³의 에너지를 소비한다(Munoz 등, 2010; Gruenspeht 등, 2010). 그리고 RO를 사용한 대규모 음용 폐수 재활용은 2.8-3.8 KWh/m³의 에너지를 사용한다(Anderson, 2006; Apostolidis, 2010). 호주에서는 현장 기술을 이용한 주택 하수 재활용에 대한 지역사회의 지원이 널리 이루어지고 있다. 그러나 수용 가능한 수질을 생산하기 위한 필요한 처리 수준을 고려할 때, 해당 기술은 기존의 용수 생산 방식보다 더 많은 에너지(2.5~4.5 kWh/m³)를 필요로 한다.

2.5.11 방류

방류에 사용되는 평균 에너지 인텐시티는 0.053 kWh/m³으로, 전체 물순환 시스템에서 가 장 적은 것으로 나타났다. 총 6개의 자료가 사용되었으며 일사분위수와 삼사분위수는 각 각 0.038 kWh/m³, 0.068 kWh/m³이며, 중앙값과 최빈값은 각각 0.054 kWh/m³, 0.055 kWh/m³로 분석되었다. 중앙값과 최빈값이 평균보다 높게 분석되며 이로 인해 왜도 값은 음의 값인 -0.022로 산정되었다. 최솟값과 최댓값은 각각 0, 0.106 kWh/m³로 적은 범위를 보였다.

하천, 하구 및 바다로 배출되는 방류는 에너지 소비량이 적고 환경에 미치는 영향이 적 기 때문에 일반적인 널리 활용되고 있다. 일 예로 0.02 kWh/m³의 에너지가 호주의 배출 처리 폐수에 소비된다(Apostolidis, 2010).

2.6 도시 물순환 시스템 개선 및 관리

2.6.1 물·에너지 절약 방안

"에너지 절약을 위한 물 절약" 및 "물 절약을 위한 에너지 절약"은 넥서스 관점에서 매우 중요한 항목이다. 에너지 효율성과 에너지 회수 전략은 지난 20년간 많이 발전하였 으나, 현재는 넥서스 관점에서 개선 및 관리가 아니라 에너지 관점에서의 기술이 이 대 부분이다. 따라서 한 부문을 절약하는 것이 다른 부문에 어떠한 영향을 미치는지 판단 필요한 것이다.

에너지 효율성 향상을 위한 계획은 낮은 에너지 사용량에서 이점을 발휘할 수 있지만, 인구증가, 기후변화와 같은 외부 요인으로 인한 용수 및 에너지 사용량 증가로 인해 이 와 같은 효과를 개별적으로 개량화 하는 것은 매우 어려운 실정이다.

도시 물순환 시스템에서 에너지 관리를 증진시킬 기회는 [그림 69]에서 나타난 바와 같이 다양하며, 이와 같은 개선을 위한 전략은 [표 61]에서와 같이 유지관리 효율 개선, 새로운 개술의 도입, 그리고 용수 재이용 및 에너지 회수 부문으로 나누어 질 수 있다.

에너지 효율, 부하 관리 및 수요 대응 전략을 포함하는 유지관리 효율 개선은 관련 기술 솔루션과 특정 관행 또는 절차의 기관이 모두 포함된다. 장비 및 프로세스의 효율성을 개선하는 것은 에너지를 절약하는 또 다른 방법이며, 상수사용과 하수 처리에 적용할 수 있는 신기술과 고도화된 공정은 각 단계별 에너지 인텐시티를 감소시키는 효과가 있기도 한다. 에너지 회수는 물이나 하수에 포함되어 있는 잠재적 에너지를 회수하여 나중에 재 사용할 수 있도록 하는 특정 기술을 의미한다.

방안	유지관리 효율 개선	신기술 도입	용수 재이용 및 에너지 회수
예	 물·에너지 관리 전략 데이터 모니터링 및 공정관리 물보전 * 물손실 관리 * 수요 관리 수요대응 * 수요이동 * 현장발전 	 상수관망 최적화 * 수두손실 감소 고효율 펌프 및 모터 가변속 드라이브 (Adjustable speed drives) 폭기 고도화 설비 미생물 연료 전지 LED UV 램프 	- 소화조 바이오가스 생산 - 소수력 발전 - 신재생에너지 활용

표 61. 도시 물순환 시스템에서 에너지 개선 방안

그림 69. 에너지 효율, 재생 에너지, 물 효율 향상이 적용 가능한 도시 물순환 시스템 각 단계별 에너지 강도

2.6.2 유지관리 효율 개선

에너지 관리를 위한 실행전략은 [그림 70]에서와 같이 현행유지, 전통적인 감사 수행, 에 너지 개선 프로세스의 세 가지 방안으로 나누어 질 수 있다. 일반적으로 에너지 효율을 향상시키기 위해 신기술을 도입하는 전략은 에너지 성능 관리에는 미미한 영향을 미치는 경우가 대다수이기에 현행을 유지하는 것이 하나의 전략일 수 있다. 그리고 현 시스템의 짧은 기간 동안 사용된 에너지 과정의 감사를 통한 다양한 기회 발굴이 가능하다. 그리 고 지속적인 에너지 효율 개선을 위한 장기적 해결방안을 위한 에너지 개선 프로세스(예. ISO 50001-Energy management)를 적용할 수 있다.

The 'do nothing' case

그림 70. 에너지 개선 프로세스를 적용한 경우와 적용하시 않은 경우 이익 출처: EPA, 2013

이와 같은 에너지 관리 전략(Strategic energy management, SEM)은 도시 물순환 시스템 에서 새로운 분야로 각광받고 있다. 에너지 관리 전략은 구조화된 방법으로 에너지 효율 성 증진을 위해 다양한 기관을 참여시킬 수 있다. 60년이 넘은 전략적 관리 개념은 품질 및 안전 등의 영역에서 지속적으로 입증되어 왔으며, 10년 이상 관련 시설에서 이러한 접근 방식을 적용하며 에너지에 긍정적인 영향을 미침을 알 수 있었다.

에너지 관리 전략은 임원진 참여 확대, 에너지 목표 달성 및 운영·유지보수 개선, 성과 지 표 수립 및 추적, 에너지 관련 프로젝트를 정기적으로 수행하기 위한 팀 결성, 직원들의 에너지에 대한 인지능력을 기르며 개선점을 제안하고 조치를 취할 수 있도록 참여, 단순 교체에 집중하는 것이 아닌 장비의 운영 및 유지보수에 대한 고려를 포함하고 있다.

상수 및 하수 시설의 에너지 프로그램 효율성 개발, 시행 및 유지하기 위한 방안이 있으 며, 이러한 접근 방식은 지역 용수 및 하수 시설의 에너지 효율 개선을 달성하는 데 도 움이 될 수 있다. 이러한 단계는 [그림 71]에서와 같이 시간에 따라 지속적으로 개선하는 계획-실행-확인-수행(Plan-Do-Check-Act) 관리 시스템 접근법과 같은 맥락을 지니며, 관 련 접근법은 ENERGY STAR Guidelines for Energy Management에 제시되어 있다.

Plan	 Step 1. Get Ready Establish the facility's energy policy and overall energy improvement goals Secure and maintain management commitment, involvement and visibility Choose an energy 'fenceline" Establish energy improvement program leadership Secure and maintain employee and management buy-in Step 2. Assess Current Energy Baseline Status Establish a baseline and benchmark facilities Perform an energy audit Identify activities and operations that consume the most energy or are inefficient Step 3. Establish an Energy Vision and Priorities for Improvement projects and activities Identify, evaluate, and prioritize potential energy improvement projects and activities Step 4. Identify Energy Objectives and Targets Establish energy objectives and targets for priority improvement areas Define performance indicators
Do	 Step 5. Implement Energy Improvement Programs and Build a Management System to Support Them Develop action plans to implement energy improvements Get top management's commitment and approval Develop management system "operating controls" to support energy improvements Begin implementation once approvals and systems are in place
Check	 Step 6. Monitor and Measure Results of the Energy Improvement Management Program Review what the facility currently monitors and measures to track energy use Determine what else the facility needs to monitor and measure its priority energy improvement operations Develop a plan for maintaining the efficiency of energy equipment Review the facility's progress toward energy targets Take corrective action or make adjustment when the facility is not progressing toward its energy goals Monitor/reassess compliance status
Act	Step 7. Maintain the Energy Improvement Program • Continually align energy goals with business/operation goals • Apply lessons learned • Expand involvement of management and staff • Communicate success

그림 71. 상하수도시설의 에너지효율 개선방을 위한 설계, 적요 및 적용 출처: EPA, 2013

데이터 모니터링 및 공정관리(Data monitoring and process control) 개선 또한 에너지 유 지관리 효율 개선의 한가지 방안이 될 수 있다. 복잡한 산업 공정과 마찬가지로, 컴퓨터 기반의 상수 및 하수 모니터링 및 제어 시스템은 단순한 장치부터 고급 SCADA 시스템까 지 다양하며 그 잠재력이 엄청나다. 일반적으로 SCADA 시스템은 PLCs(programmable logic controllers), RTUs(remote terminal units), 전기 계측기(electric meters)로 구성되어서 운영자가 볼 수 있거나 분석에 사용할 수 있도록 데이터를 제공해 준다. 현재 SCADA 시 스템은 우물, 정수 및 배수 펌프를 포함한 주요 장비와 공정을 정밀하게 제어하기 위해 사용되고 있다.

물 절약(Water conservation)은 도시 물순환 시스템 개선 방안 중에서 가장 중요한 부분 을 차지하고 있다. 물손실 관리와 수요 관리는 일반적으로 물 절약으로 분류되지만, 이러 한 계획들은 펌프 및 수처리 시스템에 대한 요구 수량을 감소시키기 때문에 에너지 사용 량을 낮추는 공편익을 발생시킨다. 도시 물순환 시스템의 필요 에너지가 시간에 따라 높아지면, 더 큰 규모의 에너지 절약 은 물손실(water loss)과 무수수량(non-revenue water)을 관리하는 물손실 관리를 통해 달 성되어야 한다(Lam 등, 2017).

주거 및 상업 사용자를 용수 사율을 줄임으로서 도·송수, 정수처리, 배·급수, 하수처리, 방 류에 필요한 에너지를 절약할 수 있다. 대부분의 물 절약은 세탁기, 식기세척기와 같은 장비와 저류 화장실(low flow toilets), 샤워기, 수도꼭지를 포함한 절수 대안으로 기존 장 치 교체와 같은 용수 효율성 증진에 중점이 맞춰져 있다. 이는 도시 물순환 시스템 공정 상의 에너지 절약보다 저유량 장치로 용수 수요를 감소시키며 이를 통한 에너지 절약에 초점이 맞춰져 있는 것이다. 그러나 에너지 효율성 프로그램(Energy efficiency program) 과 같이 물과 에너지 혜택을 강조하며 개선도 가능하다. 시간에 따른 사용 패턴 정보를 제공하는 것은 에너지 및 용수 산업에서 사용자에게 경각심을 심으며 그 효과가 입증되 었다. 사용 패턴에 대한 가시성을 제공하며 소비자 행동을 변화시키며 이와 더불어 누수 를 감지할 기회가 있다.

수요 대응 또한 유지관리 효율 개선을 위한 하나의 방법이 될 수 있다. 일부 수요 대응 의 목적은 시스템의 신뢰성 증진, 기반시설 최적화 지원, 유틸리티 비용 절감과 에너지 가격 인하 등을 포함한다. 상수와 하수 시스템과 같은 도시 물순환 시스템은 필요 용수 변동에 대응하기 위한 에너지 집약 시설이며, 용수 저장량에 의존하기 때문에 수요 대응 에 적합하다. 이러한 운영상의 유연성은 수요 대응에 적절히 활용될 수 있으며 수요 대 응 프로그램을 통해 효율적 에너지 관리를 할 수 있다.

이러한 에너지 사용을 줄일 수 있는 방안으로 부하 분산(Load shedding), 부하 이동(Load shifting), 현장 발전으로 변경(Switching to onsite generation)등이 있다. 부하 분산은 부하 감소로 부르기도 하며, 이는 조명 끄기, HVAC 온도 설정값 변경, 비주요 장비 전원 끄기 등을 포함한다. 부하 이동은 피크 시간대에서 다른 시간대로 전환하는 것을 포한다. 예를 들면, 피크 시간대를 벗어난 시간대에 용수 펌프, 사전 폭기, 배수 스케쥴링, 혐기성 소화 방법, 역세(backwash) 필터 공정을 수행할 수 있다. 또한 몇몇 시설은 현장 발전기를 통해 피크 부하 중 일부를 충족하며 수요에 대응할 수 있다.

2.6.3 신기술 도입

펌프와 모터의 효율 조합은 펌프의 성능에 큰 영향을 주며, 펌프는 최고효율점(best efficiency point, BEP)에서 작동하여야 한다. 적정 규격의 펌프를 선정하는 것 또한 중요 하다. 장래 예측 수량이 아닌, 실제 흐름에 기반을 둔 펌프·모터 시스템을 선정하는 것이 하나의 방안이 될 수 있다. 일반적으로 도시 물순환 시스템의 펌프는 필요 용량을 초과 하기 때문에 펌프·모터 시스템의 효율성은 상대적으로 낮은 경우가 많다. 이와 같은 경우

에는 펌프 임펠러 조정·교체 및 가동 펌프 수 조정을 통해 효율을 향상할 수 있다. 펌프 임펠러의 조정·교체는 실제 유량 요구사항에 맞춰 부분적으로 유량을 조절할 때에 비해 필요 에너지의 양이 적다. 그리고 평균 혹은 기저유량에 맞는 펌프를 선정하여 첨두유량 에 보조 펌프를 사용하며 효율성 향상시킬 수 있다. 이 경우 가장 효율성이 높은 펌프는 첫 번째로 가동하는 것이 중요하다. 펌프 시스템에서의 전력 효율성은 모터 교체로 달성 될 수 있지만(예: 구형 모터를 고효율 모터로 교체), 일반적으로 펌프/모터 그룹 전체의 효율성을 개선하며 달성될 수 있다. 그리고 주기적인 펌프 효율성 테스트를 통하여 전력 효율성 기회를 식별할 수 있으며, 펌프가 고장 나기 전에 비용 효과적으로 유지보수를 할 수 있다.

펌프 특성곡선을 조절하기 위해 가변속 드라이버(Adjustable speed drivers, ASDs) 또는 가 변 주파수 드라이브(Variable frequency drives, VFDs) 제어를 적용하면 유량제어 또는 바 이패스 방법들에 비해 5%에서 50%의 에너지를 절약할 수 있다.

관망 최적화는 미국 에너지부(U.S. Department of Energy)에서 관로의 교체와 이에 따른 에너지 영향을 연관 짓고자 제시된 개념이다. 마찰력은 수두손실을 유발하여 에너지 비 용을 증가시키며, 관로의 마찰 손실은 관 내부의 거칠기 및 조도계수의 증가로 인해 시 간이 지남에 따라 증가하는 경향이 있다. 파이프라인 최적화에는 관 갱생과 관 교체또는 복구의 두 가지 방법이 있다.

폭기 시스템은 [그림 72]에서와 같이 에어레이션 탱크, 블로어, 공기관 및 수중 공기 확산 기를 조합하여 사용한다. 이때 미세공극확산기는 하수에서 더 큰 기포보다 높은 산소전 달효율성을 지니며, 이 기술은 현재 활성 슬러지 공정에서 주요 사용되는 기술이다. 미세 공극확산기를 사용하면 생물학적 처리에 필요한 공기의 양을 10%에서 40%까지 줄일 수 있다. 그러나 미세공극환산기는 일정한 성능 유지를 위해 정기적인 세척을 필요로 한다.

그림 72. 폭기 시스템

2.6.4 물 재이용 및 에너지 회수

[그림 73]에서와 같이 바이오 가스를 이용한 발전을 통해 에너지를 회수할 수 있다. 혐기 성 소화가 바이오 솔리드 안정화에 사용된다면, 유기물질의 발효에 의해 생성된 바이오 가스는 여러 용도로 사용될 수 있다.

그림 73. 가스화 프로세스

상수관망에서 소수력 발전을 통해 에너지 회수도 가능하다. 과도한 상수관망에서의 압력 은 에너지로 회수하기 좋은 대상이다. 현재 상수관망의 에너지를 회수하기 위한 가역 펌 프·터빈 기술은 존재하지만, 현실적으로 널리 적용되고 있지는 못하다.

태양광, 풍력과 같은 재생 가능한 에너지는 분배 시스템 및/또는 중력 저장 탱크(gravity storage tanks)에서 물을 펌핑하는데 사용하여, 탄소 배출 또한 제어할 수 있다.

출처: State of NSW and Office of Environment and Heritage, 2019

2.7 모델 구축 및 분석

2.7.1 모델 구축

2차년도의 넥서스 모델의 부문, 공간적 범위, 상호 연계성, 연구의 목표 수준 및 분석 목 적을 포함한 모델 구축 방안은 1차년도 넥서스 모델과 동일하게 진행하였으며, [표 62]에 제시된 방향과 같다.

표 62. 도시 물순환 시스템 넥서스 모델 구축 방향

항목	넥서스 모델 개발 방향
부문	- 물, 에너지, 환경
공간적 범위	- 도시 수준
<u> </u>	- 거시적
연구 목표 수준	- 넥서스 이해
분석 목적	- 내부 관계 분석
	- 일방적(물 → 에너지, 환경) 영향 분석 (물 중심 넥서스 모델 구축)

본 연구에서 도시 물순환 시스템 넥서스 모델의 주요 공정은 [그림 74]에서 나타난 바와 같이 상수 시스템, 용수 사용 및 하수 시스템으로 분류될 수 있다. 취수(지하수/지표수), 담수, 도·송수, 정수처리, 배·급수, 용수 사용(생활용수/상업용수), 하수 집수, 하수처리 및 방류 과정을 주요 과정으로 고려하였으며, 하수 재이용은 고려하지 않았다. 용수 사용 부 문에서 농업용수와 공업용수 부분은 생략하였다.

그림 74. 도시 물순환 시스템 및 주요 공정

도시 물순환 시스템의 각 공정 내에서 소모되거나 발생되는 자원의 양은 각 공정을 전체 적으로 고려한 전체 공정 경험 모델(whole empirical model), 공정을 세부 프로세스로 분 리하여 산정한 세부 공정 경험 모델(segmented empirical model), 그리고 각각의 값을 이 론적으로 계산한 이론적 모델(theoretical model)을 통하여 산정하였다. 각 공정별로 전체 공정 경험 모델, 세부 공정 경험 모델 및 이론적 모델의 포함여부는 [표 63]에 설명되어 있다. 각각의 모델들에 적용된 매개변수의 값들은 2.7.2절과 2.7.3절에 제시되어 있다.

표 63. 도시 물순환 시스템 공정별 전체 경험 모델, 분류된 경험 모델 및 이론적 모델

	Desalinat ion	Surface water intake	Groundw ater intake	Conveya nce	WT	Tiansmission & Distribution	Water use	Wastewater collection	WWT	Discharg e
WEM	0	0	0	0	0	0	0	0	0	0
SEM	0		0	0	0	0	0		0	
TEM				0		0				

시스템 다이나믹스를 적용하여 구현된 도시 물순환 시스템 넥서스의 주요 인과 관계는 [그림 75]에 나타난 바와 같다. 모델에 적용된 변수, 관계식 및 단위는 [표 64]에 자세히 제시되어 있다.

그림 75. 넥서스 모델의 주요 인과 관계

표 64. 모델 구성 변수, 관계식 및 단위

순번	모델 변수	관계식	단위
1	AL ratio	0.1	1
2	Apparent loss	NRW a ratio/(1-NRW r ratio)*"Residential & Commercial water use"	m3
3	AV MED	IF THEN ELSE(PS De=2, EI MED, 0)	kWh/m3
4	AV MSF	IF THEN ELSE(PS De=1, EI MSF, 0)	kWh/m3
5	AV MVC	IF THEN ELSE(PS De=3, EI MVC, 0)	kWh/m3
6	AV RO	IF THEN ELSE(PS De=4, EI RO, 0)	kWh/m3
	Average mechanical		1
7	efficiency Con	70	
	Average mechanical		
8	efficiency Con TD	70	1
9	Cf Con	10.667	mwc
10	Cf Con TD	10.667	mwc
11	CI Total	2	kgCO2/kWh
12	Conveyance	Water treatment + Desalination ratio*"Transmission & Distribution"	m3
13	Desalination	Desalination ratio*Conveyance	m3
14	Desalination ratio	IF THEN ELSE(Time>5, 0, 0)	1
15	Discharge	Wastewater treatment	m3
16	E Con	E Con WEM + E Con SEM + E Con TEM	kWh
17	E Con SEM	EIU Con SEM*SEM Con*Pipe length Con	kWh
18	E Con TEM	EI Con TEM*TEM Con	kWh
19	E Con WEM	EI Con WEM*WEM Con	kWh
20	E De	E De WEM + E De SEM	kWh
21	E De SEM	EI De SEM * SEM De	kWh
22	E De WEM	EI De WEM*WEM De	kWh
23	E Dis	E Dis WEM	kWh
24	E Dis WEM	EI Dis WEM*WEM Dis	kWh
25	E GWI	E GWI WEM + E GWI SEM	kWh
26	E GWI SEM	EIU GWI SEM * Groundwater level * SEM GWI	kWh
27	E GWI WEM	EI GWI WEM*WEM GWI	kWh
28	E SWI	E SWI WEM	kWh
29	E SWI WEM	EI SWI WEM*WEM SWI	kWh
30	E ID	E ID WEM + E ID SEM + E ID IEM	K W N
- 31	E ID SEM	ELC CON SEM ID*SEM ID*Pipe length ID	k Wh
32	E ID IEM	EI COILIEM ID*IEM ID	kWh
30		E ID WEM*WEM ID	kWh
35	E WT SEM	E WI WEM ' E WI SEM	kWh
36	E WT WEM	EI WT VEM*VEM WT	kWh
37	E WU	E WU WEM + E WU SEM	kWh
	1110	(El heating*WU heating) + (El wet appliance*WU wet appliance) + (El	
38	E WU SEM	landscapings/MI landscaping) + ("EL on-site pumping"*"(MI on-site pumping")	kWh
39	F WII WFM	FI WILWEM*WEM WIL	kWh
40	E WWC	E WWC WEM	kWh
41	E WWC WEM	EL WWC WEM*WEM WWC	kWh
42	E WWT	E WWT WEM + E WWT SEM	kWh
43	E WWT SEM	EI WWT SEM*SEM WWT	kWh
44	E WWT WEM	EI WWT WEM*WEM WWT	kWh
45	EI activated sludge	0.1	kWh/m3
46	EI Backwash water	1	kWh/m3
47	El Chlorine	1	
47	disinfection		kWh/m3
	"El Coagulation(rapid		
48	mixing)"	1	kWh/m3
		EI Con TEM unit conversion*(Height difference Con+Pressure	
10	EL Con TEM	losses due to friction Con+Supplied pressure need Con)*Water	kWh /m?
49	EI COIL I EM	density Con*Gravity Con*(1/3600)*(1/1000)*(100/Average	KVV11/1113
		mechanical efficiency Con)*(100/Fuel or electrical average	
			1

순번	모델 변수	관계식	단위
		efficiency of the motor Con)	
		FI Con TEM unit conversion TD*(Height difference Con	
		ID+Pressure losses due to friction Con ID+Supplied pressure need	
50	EI Con TEM TD	Con TD)*Water density Con TD*Gravity Con	kWh/m3
		TD*(1/3600)*(1/1000)*(100/Average mechanical efficiency Con	
		TD)*(100/Fuel or electrical average efficiency of the motor Con TD)	
		1D)*(100/1-uer or electrical average enriciency or the motor con 1D)	(laWb + m2 + a + a)
	EI Con TEM unit		(KWII*III3*S*S)
51	conversion	1	/(m3*mwc*kg*
	2011/21/31011		m)
			(kWh*m3*s*s)
52	El Con TEM unit	1	//m3*mwc*ka*
52	conversion TD) (III3*IIIWC*Kg*
		0.07	m)
53	El Con WEM	0.37	kWh/m3
54	EI De SEM	AV MSF + AV MED + AV MVC + AV RO	kWh/m3
55	EI De WEM	3.17	kWh/m3
56	EI Dis WEM	0.054	kWh/m3
57	EI Filtration	1	kWh/m3
58	EI Flocculation	1	kWh/m3
59	EI GWI WEM	0.505	kWh/m3
60	EI heating	100	kWh/m3
61	EL lagoon	0.1	kWh/m3
62	EL landscaping	5	kWh/m3
63	EL MED	2	kWh/m3
64	El Mombrano	1	kWh/m3
	El membrane		K WII/ III5
65	El memorane	0.1	kWh/m3
	bioreactor		
66	EI MSF	5	kWh/m3
67	EI MVC	9	kWh/m3
68	"EI on-site pumping"	5	kWh/m3
69	EI oxidation ditch	0.1	kWh/m3
70	EI Ozone disinfection	1	kWh/m3
71	EI primary treatment	0.01	kWh/m3
72	EI RO	7.4	kWh/m3
73	EI Sedimentation	1	kWh/m3
74	EL SWI WEM	0	kWh/m3
75	FLTD WEM	0.255	kWh/m3
76	FI tertiary treatment	0.1	kWh/m3
77	El trickling filtor	0.1	kWh/m3
	EI UIV digipfogtion	1	kWh/m2
70			KWII/III3
	El wet appliance		KWN/M3
		El Coaguiation(rapid mixing) + El Flocculation + El Sedimentation	
80	EI WT SEM	+ El Filtration+ El Membrane + El Chlorine disinfection + El Ozone	kWh/m3
		disinfection + EI UV disinfection+ EI Backwash water	
81	EI WT WEM	0.09	kWh/m3
82	EL WU WEM	INTEG (EL WU WEM increase 3 211)	kWh/m3
83	EL WU WEM increase	0.03211	kWh/m3
84	EL WWC WFM	0.061	kWh/m3
		El primary tratmont + El Jagoon + El activated dudgo + El ovidation	KWII/III0
85	EI WWT SEM		kWh/m3
		atch+ El thockling filter + El membrane bioreactor + El tertiary treatment	1.11.11.1
86	EI WWT WEM	0.44	kWh/m3
87	EIU Con SEM	0.004571	kWh/m3/km
88	EIU Con SEM TD	0.004571	kWh/m3/km
89	EIU GWI SEM	0.004	kWh/m3/m
00	Flow rate unit	1	
90	dimensionless Con		s/m3
	Flow rate unit		
91	dimensionloss Con TD	1	s/m3
02	Elow rate Con	Flow rate unit conversion Con*TEM Con	m3/a
54	I IOW I ALE COIL	TIOW TALE UNIT CONVERSION CONTREMICON	1110/0

순번	모델 변수	관계식	단위
93	Flow rate Con TD	Flow rate unit conversion Con TD*TEM TD	m3/s
	Flow rate unit	1 //04 . 00 . 00)	1/
94	conversion Con	1/(24*60*60)	1/S
	Flow rate unit		
95	conversion Con TD	1/(24*60*60)	l/s
96	Fraction heating	0.1	1
97	Fraction landscaping	0.1	1
	"Fraction on-site	0.1	1
98	pumping"	0.1	
	Fraction wet	0.1	1
99	appliance	0.1	
	Fuel or electrical		
100	average efficiency of	70	1
	the motor Con		
	Fuel or electrical		
101	average efficiency of	70	1
	the motor Con TD		
102	Gravity Con	9.8	m/(s*s)
103	Gravity Con TD	9.8	m/(s*s)
104	Groundwater intake	Groundwater ratio * Conveyance	m3
105	Groundwater level	INTEG (Groundwater level decrease, 30)	m
100	Groundwater level		
106	decrease	0	m
107	Groundwater ratio	IF THEN ELSE(Time>5, 0.5 , 0.5)	1
100	"Hazen-Williams	100	1
108	coefficient Con TD"	100	
100	"Hazen-Williams	100	1
109	coefficient Con"	100	
110	Height difference Con	50	mwc
111	Height difference Con TD	50	mwc
112	lpcd	INTEG (lpcd increase, 250)	liter/(people*day)
113	lpcd increase	5	liter/(people*day)
114	MS Con	2	1
115	MS De		1
110	MS GWI MS TD	1	1
117	MS ID MS WT	1	1
119	MS WI	1	1
120	MS WWT	1	1
121	NRW a ratio	AL ratio*NRW ratio	1
122	NRW r ratio	(1-AL ratio)*NRW ratio	1
123	NRW ratio	INTEG (NWR increase, 0.3)	1
124	NWR increase	0.02	1
125	Pipe diameter Con		m
126	Pipe diameter Con TD		m
127	Pipe diameter unit	1	1/m
	dimensionless Con		
128	Pipe diameter unit	1	1/m
100	dimensionless Con TD		1
129	Pipe length Con	IF IHEN ELSE(IIME>Z, IUU, IUU)	кm km
130	Pipe length ID	100	кіп
131	dimensionless C-	1000	1/km
	Dipo longth unit		
132	ripe lengui unit	1000	1/km
100	Dopulation	INTEC (Dopulation growth 250000)	neeple
133	Population growth	Population growth rate * Population	people /Voar
104			
135	Population growth	0.01	1/Year

순번	모델 변수	모델 변수 관계식		
	rate			
136	Pressure losses due to friction Con	Cf Con*power(Flor rate unit dimensionless Con*Flow rate Con, 1.852) / power("Hazen-Williams coefficient Con",1.852) / power(Pipe diameter unit dimensionless Con*Pipe diameter Con, 4.8704) * (Pipe length unit dimensionless Con*Pipe length Con)	mwc	
137	Pressure losses due to friction Con TD	Cf Con TD*power(Flor rate unit dimensionless Con TD*Flow rate Con TD, 1.852) / power("Hazen-Williams coefficient Con TD",1.852) / power(Pipe diameter unit dimensionless Con TD*Pipe diameter Con TD, 4.8704) * (Pipe length unit dimensionless Con TD*Pipe length TD)	mwc	
138	PS De	1	1	
139	Real loss	NRW r ratio/(1-NRW r ratio)*"Residential & Commercial water use"	m3	
140	"Residential & Commercial water use unit conversion"	0.001	(m3*day)/liter	
141	"Residential & Commercial water use"	"Residential & Commercial water use unit conversion"*lpcd*Population/1000	m3	
142	Revenue water	(1-NRW a ratio-NRW r ratio)/(1-NRW r ratio)*"Residential & Commercial water use"	m3	
143	SEM Con	IF THEN ELSE(MS Con=2, Conveyance, 0)	m3	
144	SEM De	IF THEN ELSE(MS De=2, Desalination, 0)	m3	
145	SEM GWI	IF THEN ELSE(MS GWI=2, Groundwater intake, 0)	m3	
146	SEM TD	IF THEN ELSE(MS TD=2, "Transmission & Distribution", 0)	m3	
147	SEM WT	IF THEN ELSE(MS WT=2, Water treatment, 0)	m3	
148	SEM WU	IF THEN ELSE(MS WU=2, "Residential & Commercial water use", 0)	m3	
149	SEM WWT	IF THEN ELSE(MS WWT=2, Wastewater treatment, 0)	m3	
150	Supplied pressure need Con	15	mwc	
151	Supplied pressure need (an ID)	15 (1. Crear durates matic Desclipation matic) - Conservation	mwc	
152	Surface water intake	(1-Groundwater ratio-Desaination ratio) * Conveyance	m3	
155		IF THEN ELSE(MS COIL-S, COIlveyalice, 0)	m ²	
154	Total Carbon Emission	CL Total * Total Energy Use	kgCO2	
156	Total Energy Use	F D + F SW + F GW + F C D + F WT + F T D + F W1 + F WWC + F WWT + F D S	kWh	
157	Total Water Use	Desalination + Surface water intake + Groundwater intake	m3	
158	"Transmission & Distribution"	Apparent loss+Real loss+Revenue water	m3	
159	Wastewater collection	Wastewater collection ratio*"Residential & Commercial water use"	m3	
160	Wastewater collection ratio	0.95	1	
161	Wastewater ratio	0.95	1	
162	Wastewater treatment	Wastewater ratio*Wastewater collection	m3	
163	Water density Con	1000	kg/m3	
164	Water density Con TD	1000	kg/m3	
165	Water treatment	(1-Desalination ratio)*"Transmission & Distribution"	m3	
166	WEM Con	IF THEN ELSE(MS Con=1, Conveyance, 0)	m3	
167	WEM De	IF THEN ELSE(MS De=1, Desalination, 0)	m3	
168	WEM Dis	Discharge	m3	
169	WEM GWI	IF THEN ELSE(MS GWI=1, Groundwater intake, 0)	m3	
170	WEM SWI	Surface water intake	m3	
170	WEM ID	IF THEN ELSE(MS ID=1, Transmission & Distribution", 0)	m3	
172	WEM WI	IF IFIN ELSE(MS WI=1, Water treatment, U)	1113 m2	
173		Maetowator collection	1113 m3	
175	WEM WWC	IF THEN FI SE(MS WWT=1 Wastewater treatment ()	m3	
176	WII heating	Fraction heating*SEM WII	m3	
177	WU landscaping	Fraction landscaping*SEM WU	m3	
178	"WU on-site pumping"	"Fraction on-site pumping"*SEM WU	m3	
179	WU wet appliance	Fraction wet appliance*SEM WU	m3	

2.7.2 전체 공정 경험 모델

도시 물순환 시스템의 공정별 에너지 인텐시티 값들은 [표 65]에 나타난 바와 같다. 본 연구에서는 [표 66]과 같이 해당 공정에서 삼 사분위수에 해당하는 에너지 인텐시티를 고 려하는 경우 취약한 도시(vulnerable city)로 고려하였으며, 중위값의 에너지 인텐시티를 고려하는 경우 보통의 도시(normal city), 그리고 일 사분위수의 에너지 인텐시티 값을 사 용하는 경우 강건한 도시(robust city)로 설정하였다. 단 용수 사용 부분에 에너지 인텐시 티 범위는 다른 공정에 비해 매우 넓은 값을 나타내고 있어 중위값만 고려하였다.

취약한 도시는 강건한 도시와 비교할 경우 단위 용수를 생산하고 이용한 뒤 처리하는데 필요로 하는 에너지가 더 높은 경우이다. 따라서 취약한 도시일수록 기후변화와 도시화 와 같은 외부 영향 요소 또는 도시 물순환 시스템의 운영 효율의 악화가 미치는 영향이 크게 된다.

Items	Desalin ation	Surface water intake	Ground water intake	Convey ance	WT	Transmi ssion & Dstribution	Water use	WW collection	WWT	Discharge
중앙값	3.170	-	0.505	0.370	0.090	0.255	3.211	0.061	0.440	0.054
평균	11.963	-	0.822	0.910	0.294	0.439	54.491	0.181	0.494	0.053
일사분 위수	1.197	-	0.372	0.150	0.029	0.136	3.161	0.037	0.300	0.038
삼사분 위수	5.450	-	0.874	1.813	0.298	0.385	157.10 0	0.140	0.711	0.068
최솟값	0.015	-	0.190	0.000	0.005	0.010	3.160	0.022	0.198	0.000
최댓값	142.50 0	-	3.300	4.070	2.390	4.900	208.38 0	0.710	1.140	0.106
관측수	43	-	20	27	32	48	4	11	31	6

표 65. 도시 물순환 시스템 공정별 에너지 인텐시티 분포

표 66. 도시 물순환 시스템의 취약, 보통, 강건한 단계에 따른 매개변수 값

ltems	Desalin ation	Surface water intake	Ground water intake	Convey ance	WT	Transmi ssion & Distribution	Water use	WW callection	WWT	Discharg e
Robust	1.197	0	0.372	0.150	0.029	0.136	3.211	0.037	0.300	0.038
Norma l	3.170	0	0.505	0.370	0.090	0.255	3.211	0.061	0.440	0.054
Vulner able	5.450	0	0.874	1.813	0.298	0.385	3.211	0.140	0.711	0.068

2.7.3 세부 공정 경험 모델

담수화 공정, 지하수 취수, 도수, 정수처리, 송부 및 배수, 용수 사용, 하수처리 공정에는 세부 공정 경험 모델을 적용하였다. 각각의 공정에 적용된 매개변수의 값들은 아래에 설 명되어 있다.

가. 담수화 공정

IDA(2012)와 Gomez 등(2015)에 따른 다단증발법(MSF; Multi Stage Flash), 다중효율법 (MED; Multi Effect Distillation), 기계증기압축법(MVC; Mechanical Vapor Compression), 역 삼투압방식(RO; Riverse Osmos)의 공정에 따른 열에너지 인텐시티와 전기 에너지 인텐시 티 값은 [표 67]에 나타난 바와 같다. 각 세부 공정에서 일반적으로 운영되는 시설 용량 및 운영 온도도 같이 제시되어 있다. 각각의 공정에 따른 강건한 도시, 보통의 도시, 취 약한 도시에 적용한 매개변수 값은 [표 68]에서와 같이 제시된 값이 본 연구에서 제시된 값의 범위가 균등 분포로 가정하여 일 사분위수, 중위값, 삼 사분위수 값을 적용하였다.

표 67. 담수화 공정에 따른 열 에너지 인텐시티 및 전기 에너지 인텐시티

Taghnalagu	Plant Capacity	Thermal Energy	Electrical Energy	Operation
теспноюду	(m ³ /day)	(kWh/m ³)	(kWh/m ³)	Temperature
MSF	4000-450000	55-220	4-6	90-112
MED	100-56000	40-220	1.5-2.5	50-70
MVC	5-17000	-	6-12	50-70
RO	0.01-360000	-	2.8-12	<40

표 68. 담수화 공정별 강건, 보통 및 취약한 도시에 적용된 에너지 인텐시티

Items	MSF	MED	MVC	RO
Robust	4.5	1.75	7.5	5.1
Normal	5	2	9	7.4
Vulnerable	5.5	2.25	10.5	9.7

나. 지하수 취수 공정

Rothausen & Conway (2011)와 Nelson 등 (2009)는 [표 69]에서와 같이 지하수 취수 시 이 론적인 단위 깊이에 따른 에너지 인텐시티를 제시하였으며, 그 값은 약 0.0027 kWh/m³/m 의 값으로 유사하였다. Plappally & Leinhard (2012)는 일반적인 사례에서 단위 깊이에 따 른 에너지 인텐시티 값을 제시하였으며, 그 값은 0.004 kWh/m³/m로 이론적인 값보다 약 48% 큰 값을 나타내었다. 이는 지하수 취수 시 펌프 운영조건이 최적 조건에서 운영되지 않은 것에 기인한다. 지하수 취수 시 강건한 도시, 보통의 도시, 취약한 도시에 적용되는 에너지 인텐시티의 값은 [표 70]에 나타난 바와 같이 Plappally & Leinhard (2012)의 값에 따라 지하수 취수 심도가 15 m, 30 m, 45 m인 경우로 적용하였다.

_			
Туре	Water intensity	Details	Reference
Theoretical	Density of 1000 kg/m ³		Rothausen & Conway
physical relationship	0.0027 KWII/III /III	100% efficiency	(2011)
	$0.00273 kWb /m^3/m$	Without friction	Notice at al. (2000)
	0.002/3 KWII/III/III	At peak efficiency	Neison et al. (2003)
Cooo atudu	$0.004 kWb (m^3/m)$		Plappally &
Case study	0.004 KWII/III /III		Leinhard (2012)

표 69. 이론적 또는 사례별 지하수 취수 단위 깊이 에너지 인텐시티

표 70. 지하수 취수 시 강건, 보통 및 취약한 도시에 적용된 단위 깊이 에너지 인텐시티 및 취수 심도

Items	Unit Energy Intensity	Lift
Robust	0.004	15
Normal	0.004	30
Vulnerable	0.004	45

다. 도수 공정

GEI & Navigant(2010), Dale(2004), Anderson(2006), Wilkinson(2000), Stokes J.(2009), Scott C.(2009), AGDSEWPC (2010) 지역별 도수관로 길이에 따른 단위 용수 이송에 사용되는 에너지량을 제시하였으며, 제시된 값에 따른 단위 관로 길이 당 에너지 인텐시티는 [표 71]에 나타난바와 같다. 본 연구에서는 [표 72]에서와 같이 각각의 문헌에서 제시된 평균 단위 관로 길이 당 에너지 값(0.004571 kWh/m³/km)를 적용 강건한 도시, 보통의 도시, 취 약한 도시에 적용되는 에너지 인텐시티는 도수 관로의 길이를 각각 100, 300, 500 km 적용하였다.

표 71. 지역별 도수관로 길이에 따른 단위 용수 에너지 인틴세티

Logation	Length, lift	Energy	Unit value	Deference	
Location	(km); (m)	(kWh/m ³)	(kWh/m ³ /km)	Reference	
West Branch Aqueduct, CA	(502): (_)	2.07	0.004	GEI & Navigant (
(USA)	(302), (-)	2.07	0.004	2010)	
Coastal Branch Aqueduct,	(AE7): ()	0.01	0.005	Dale (2004),	
CA (USA)	(437), (-)	2.31	0.005	Anderson (2006)	
Transfer From Colorado	(200). ()	1.6	0.004	Willingon (2000)	
River to Los Angeles, CA	(389), (-)	1.0	0.004		
Water Dipa Australia	(AEO): ()	2.2	0.007	Stokes J (2009),	
water Fipe, Australia	(430), (-)	3.3	0.007	Scott C (2009)	
CCDD to DIWCC Australia	(116); ()	0.21	0.002	Scott C. (2009),	
SSDP to PIWSS, Australia	(110), (-)	0.21	0.002	AGDSEWPC (2010)	
DCDD to DIWCC Australia	11.0	0.055	0.005	Scott C (2009),	
PSDP to PIWSS, Australia	11.2	0.055	0.005	AGDSEWPC (2010)	
From Tortosa to Aguadulce	(7AE). ()	4.07	0.005	Raluy R.G (2005),	
(Spain)	(743), (-)	4.07	0.005	Munoz I. (2010)	

표 72. 도수 시 강건, 보통 및 취약한 도시에 적용된 단위 길이 에너지 인텐시티 및 도 수관로 길이

Items	Unit Energy Intensity (kWh/m³/km)	Length(km)
Robust	0.004571	100
Normal	0.004571	300
Vulnerable	0.004571	500

라. 정수처리 공정

앞의 2.5.5절 표 36에서 제시된 기존 문헌들의 정수처리 혼화, 응집, 침전, 여과, 역세, 소 독, 막, 오존, UV 세부 공정별 에너지 인텐시티의 기술 통계 값은 [표 73]에 나타난 바와 같다. 정수 처리 시 강건한 도시, 보통의 도시, 취약한 도시에 적용되는 에너지 인텐시티 의 값은 [표 74]에 나타난 바와 같이 각각 일 사분위수, 중위값, 삼 사분위수 값을 적용하 였다.

표 73. 정수처리 세부 공정별 에너지 인틴시티 기술 통계

Items	Coagulation	Flocculation	Sedimentation	Filtration	Filter backwash	Chlorine	Membrane	Ozone	UV
중앙값	0.008	0.002	0.002	0.124	0.003	0.030	0.119	0.000	0.000
 평균	0.009	0.002	0.002	0.083	0.002	0.030	0.119	0.020	0.007
일사분위수	0.008	0.002	0.002	0.000	0.001	-	0.026	0.000	0.000
삼사분위수	0.009	0.003	0.002	0.124	0.003	-	0.211	0.048	0.016
최솟값	0.008	0.002	0.002	0.000	0.000	0.030	0.026	0.000	0.000
최댓값	0.011	0.003	0.004	0.124	0.004	0.030	0.211	0.058	0.017
관측수	8	8	8	3	8	1	14	9	7

표 74. 정수처리 시 강건, 보통 및 취약한 도시에 에너지 인텐시티

Items	Coagulation	Flocculation	Sedimentation	Filtration	Filter backwash	Chlorine	Membrane	Ozone	UV
Robust	0.008	0.002	0.002	0.000	0.001	0.030	0.026	0.000	0.000
Normal	0.008	0.002	0.002	0.124	0.003	0.030	0.119	0.000	0.000
Vulnerable	0.009	0.003	0.002	0.124	0.003	0.030	0.211	0.048	0.016

마. 배·급수 공정

배·급수 공정의 경험 모델은 Juan-Delmas 등(2015)이 제시한 [수식 20]을 적용하였다. 해 당식은 단위 길이 당 에너지 인텐시티는 관로길이, 유수수량 및 인구에 관한 경험식이다. 본 연구에서는 송부 및 배수 공정에서 강건한 도시, 보통의 도시, 취약한 도시에 따른 에 너지 사용량을 해당 식을 기반으로 [표 75]에 제시된 바와 같이 적용하였다. 유수 수량 및 인구는 모델링에 적용되는 도시 물순환 시스템에서 적용된 값을 따랐으며, 도시의 에 너지 인텐시티 수준은 적용하는 배·급수 관로 길이를 100, 300, 500 km로 하여 차등을 두 었다.

$$EC = 12.7 [k Wh/m^3 \cdot km] \cdot N\Gamma^{1.064} \cdot RW \cdot LN$$
 수식 20

where,

the electricity consumption (*EC*) the length of the network (*LN*; *km*) the registered water (*RW*; m^3) the number of inhabitants (*NI*)

표 75. 배·급수 시 강건, 보통 및 취약한 도시에 에너지 인텐시티

Items	Unit Energy Intensity[kWh/m3/km]	Registered water[m3]	Number of inhabitants[person]	Length [km]
Robust	12.7	-	-	100
Normal	12.7	-	-	300
Vulnerable	12.7	-	-	500

바. 용수 사용

용수 사용 시 용수 가열, 가전제품 사용, 조경용도, 현장 펌프 사용과 같은 사용 목적별 로 적용하는 에너지 인텐시티 값은 [표 46]에서 제시된 값을 적용하였다.

바. 하수처리

앞의 2.5.9절 표 52에서 제시된 기존 문헌들의 하수처리 1차처리, 라군, 활성 슬러지, 산 화구, 살수여상 및 MBR 세부 공정별 에너지 인텐시티의 기술 통계 값은 [표 76]에 나타 난 바와 같다. 하수처리 시 강건한 도시, 보통의 도시, 취약한 도시에 적용되는 에너지 인텐시티의 값은 [표 77]에 나타난 바와 같이 각각 일 사분위수, 중위값, 삼 사분위수 값 을 적용하였다.

표 76. 하수처리 세부 공정별 에너지 인틴시티 기술 통계

	During a res		Toutions				
	treatment	Lagoon	Activated sludge	Activated Oxidation sludge ditch		MBR	treatment
중앙값	0.022	0.222	0.285	0.750	0.190	0.850	0.415
평균	0.071	0.222	0.335	0.767	0.192	0.816	0.578
일사분위수	0.010	-	0.062	0.302	0.019	0.395	0.033
삼사분위수	0.153	-	0.496	1.250	0.291	1.220	0.522
최솟값	0.010	0.190	0.003	0.302	0.002	0.330	0.003
최댓값	0.235	0.253	1.095	1.250	0.480	1.445	5.390
관측수	13	2	18	3	14	5	26

표 77. 하수처리 시 강건, 보통 및 취약한 도시에 에너지 인텐시티

	Primary		Tertiary treatment				
	treatment	Lagoon	Activated sludge	Oxidation ditch	Trickling filter	MBR	
Robust	0.010	0.206	0.062	0.302	0.019	0.395	0.033
Normal	0.022	0.222	0.285	0.750	0.190	0.850	0.415
Vulnerable	0.153	0.238	0.496	1.250	0.291	1.220	0.522

2.7.4 이론적 모델

도수 공정과 배급수 공정에는 관로를 통한 이송 시 발생되는 수두 손실을 산정하는 이론 적 모델을 기반으로 적용하였다. 이론적 모델은 2.5.4절에서 설명된 Gomez 등(2015)의 [수식 2]를 기반으로 하였다.

2.7.5 모델링

도시 물순환 시스템 개별 공정에서 소모되거나 발생되는 양을 정량화하기 위해 2.7.1절에 설명된 바와 같이 전체 공정 경험 모델, 세부 공정 경험 모델 및 이론적 모델을 구축하 였다. 도시 물순환 시스템의 넥서스 분석 시, 보다 정확한 결과 분석을 위해서는 이론적 모델, 세부 공정 경험 모델, 전체 공정 경험 모델 순으로 각각의 공정 분석 모델을 선택 하는 것이 합리적이다. 그러나 분석자가 확보할 수 있는 자료에 한계가 있으므로, 확보할 수 있는 자료에 맞게 모델을 선택하면 될 것이다. 본 연구에서는 도시 물순환 시스템 분 석 시 [표 78]에 나타난 바와 같이 담수화 지표수 취수, 정수처리, 배·급수, 하수 집수, 하 수처리 및 방류는 전체 공정 경험 모델을, 지하수 취수 도수 및 물 사용은 세부 공정 경 험 모델을 적용하였다.

	Desalin ation	Surface water intake	Ground water intake	Convey ance	WT	Trans mission & Distrib ution	Water use	Wastew ater collecti on	WWT	Dischar ge
WEM	0	0			0	0		0	0	0
SEM			0	0			0			
TEM										

표 78. 도시 물순환 시스템 분석시 각 공정별로 적용된 모델

분석된 결과는 [그림 76]과 같은 분석 방법을 적용하였다. 해당 그래프의 x축은 도시 일 물 사용량(총 사용수량, 총 유수수량, 실사용수량)을 나타내며 y측은 도시 일 에너지 사용 량을 나타낸다. 점선은 해당 물 사용량 관점에서의 인텐시티를 의미하며, 에너지 인텐시 티(총 에너지 사용량/총 사용수량), 유수수량 에너지 인텐시티(총 에너지 사용량/총 유수 수량), 실 사용수량 에너지 인텐시티(총 에너지 사용량/실 사용수량)가 적용되었다. 본 분 석 방법을 적용하면 해당 도시의 분석 시점에서 넥서스 관점에서 물과 에너지 자원의 사 용량 및 효율에 대한 현황을 파악할 수 있으며, 시계열 분석을 통해 해당 도시의 물과 에너지 자원의 사용량 및 효율의 변동을 쉽게 파악할 수 있다. 그리고 다른 도시와의 비 교 또는 벤치마킹을 통해 효율적인 도시 물순환 시스템 물·에너지 관리 전략을 수립 할 수 있다.

그림 76. 모델 결과 분석을 위한 방법론 예시

본 연구에서는 도시 물순환 시스템 변수 변동에 따른 물·에너지 사용량 및 효율분석, 도 시 분류 가이드라인 제시 및 외부영향 및 운영효율 변동에 따른 시나리오 분석을 각각 수행하였으며, 그 결과는 2.8.1절, 2.8.2절 및 2.8.3절에 설명되어 있다.

도시 물순환 시스템 변수 변동에 따른 물·에너지 사용량 및 효율 분석을 위하여 고려된 시스템 변수로 인구, 취수원 비율, 도시 에너지 인텐시티 여건(에너지 효율 변동) 및 누수 율을 고려하였다. 이를 통해 넥서스 관점에서 어떻게 도시 물순환 시스템을 관리하여야 하는지 일차적인 방향을 제시하고자 하였다.

도시 분류 가이드라인 제시에서는 기존 문헌에서 제시된 자료 값을 기준으로 도시를 분 류할 수 있는 기준을 제시하는 것을 목적으로 하였다. 해당 가이드라인을 통해 각각의 도시는 현재 해당 도시가 도시 물순환 시스템에서 어디에 위치하고 있는지를 파악할 수 있어 도시 물순환 시스템의 전략 및 실행계획을 수립하는데 도움이 될 것이다.

마지막으로 외부 영향 및 운영 효율 변동에 따른 시나리오 따른 물-에너지 자원의 사용 량 및 효율의 변동을 10년 기간 동안 분석하였다. 기후변화에 따른 취수원, 지하수위, 광 역용수 수입 및 도시화에 따른 인구증가를 외부 변동 요인으로 고려하였으며, 물손실, lpcd, 온수사용비율을 운영효율 변동 요소로 분석하였다.

2.8 분석 결과

2.8.1 도시 물순환 시스템 변수 변동에 따른 물-에너지 사용량 및 효율 분석

가. 시스템 변동 변수

2.7.1절에서는 우선적으로 도시 물순환 시스템 내 변수들의 변동에 따른 물 사용량(총 사용수량, 유수수량, 실 사용수량)과 에너지 사용량(총 에너지 사용량), 그리고 그에 따른 다양한 에너지 인텐시티(총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사 용수량 에너지 인텐시티)의 변화를 분석하였다. 이전의 연구에서는 도시 물순환 시스템의 효율적인 측면을 분석하기 위해 총 사용수량 에너지 인텐시티를 주로 이용하였으나, 본 연 구에서는 총 사용수량 에너지 인텐시티의 단점을 고려하여, 효율적인 효율 평가를 위 한 다른 2개의 에너지 인텐시티도 고려하였다. 이에 따라 변수의 변동에 따른 물과 에너 지 자원 사용의 양적인 측면과 질적인 측면의 변화를 파악할 수 있으며, 넥서스 관점에 서 어떻게 도시 물순환 시스템을 관리해야 하는지에 대한 일차적인 방향을 제시할 수 있 다.

도시 물순환 시스템의 변수는 도시 인구, 취수원 비율, 도시 물순환 시스템 에너지 인텐 시티 여건 및 누수율을 고려하였으며, 해당 변수들의 설정값은 [표 79]에 나타난 바와 같 다. 일인당 하루 물소비량(LPCD)은 도시 물순환 시스템에 미치는 영향은 도시 인구와 동 일하므로 해당 변수의 변동은 고려하지 않았다.

해당 변수들은 도시 물순환 시스템 운영자가 제어할 수 있는지 여부에 따라 크게 외부 영향 변수와 운영 효율 변수로 나누어질 수 있다. 인구, 취수원 비율은 외부 영향 변수이 며, LPCD와 누수율은 운영효율 변수로 분류된다. 도시 에너지 인텐시티 여건은 외부 영 향 변수이면서 운영효율 변수이기도 하다.

시스템 변수	변수 설정값	분류
인구	5만명, 25만명, 50만명	외부영향 변수
LPCD	250	운영효율 변수
취수원 비율	지하수 10%, 50%, 90%	외부영향
도시 에너지 인텐시티 여건	robust, normal, vulnerable	외부영향/운영효율
1 2 0	0.1, 0.3, 0.5	0 cd ÷ 0
구수 출	단 명목손실은 10%로 설정	· 춘영요출

표 79. 도시 물순환 시스템 변동 변수, 설정값 및 분류

나. 전체 변동

도시 물순환 시스템 변수들(인구, 취수원 비율, 도시 에너지 인텐시티 여건, 누수율)의 값 의 변동에 따른 물 사용량, 에너지 사용량 및 각각의 에너지 인텐시티는 [그림 77-82] 및 [표 80]에 나타난바와 같다.

[표 81]에 나타난바와 같이 인구의 증가에 따라 동일한 기울기 값을 나타내는 지점으로 이동하였다. 취수원의 비율 및 에너지 인텐시티의 여건에 따라서 각각의 인텐시티들의 궤적은 수직 방향으로 이동하였다. 그러나 누수율의 변동에 따라서는 총 사용수량 에너 지 인텐시티는 기존의 인텐시티 값보다 낮은 기울기의 선에 따라 이동하였고, 유수수량 에너지 인텐시티는 거의 수직으로 이동하였으며, 실 사용수량 에너지 인텐시티는 수직으 로 이동하였다. 각각의 변수에 관한 자세한 사항은 2.7.1 다, 라, 마, 바에 설명되어 있다.

표 80. 도시 물순환 시스템 변수 변동에 따른 인텐시티 별 궤적

出入	궤적						
친구	총 사용수량 EI	유수수량 EI	실 사용수량 EI				
인구	EI유지 선	EI유지 선	EI유지 선				
취수원 비율	수직이동	수직이동	수직이동				
도시 에너지 인텐시티 여건	수직이동	수직이동	수직이동				
누수율	EI보다 낮은 기울기의 선에 따른 이동	거의 수직 이동	수직이동				

본 연구에 따르면 도시 물순환 시스템의 자원 사용에 대한 양적인 측면을 표현할 때는 총 사용수량과 총 에너지 사용량을 활용하는 것이 적합한 것으로 판단된다. 도시 물순환 시스템 내에서 취수되는 총량이 실질적으로 소모되는 자원의 양이므로, 유수수량 또는 실 사용수량보다는 총 사용수량을 고려하는 것이 자원의 소모량 관점에서는 합리적이다.

효율적인 측면을 분석할 때는 실 사용수량 에너지 인텐시티를 이용하는 것이 합리적인 것으로 판단된다. 일반적으로 활용되는 총 사용수량 에너지 인텐시티를 사용할 경우, 누 수율이 높을수록 총 사용수량 에너지 인텐시티는 낮아지므로 누수율에 의해 효율이 왜곡 되는 현상이 발생할 수 있다. 유수수량 에너지 인텐시티의 경우 총 사용수량 에너지 인 텐시티 보다 왜곡되는 정도는 적으나, 약간의 편향이 발생된다. 그러나 정확한 실 사용수 량을 파악하기 위해서는 상수관망 물손실 분석을 통해서 누수율과 누수 중 명목손실과 실손실의 비율이 정확하게 계산되어야 한다. 그리고 관련 자료의 확보가 어려울 경우, 해 당 도시 물순환 시스템에서 취득할 수 있는 자료 내에서의 분석이 필요하다.

그림 77. 보통 도시 여건에서 변수 변동에 따른 총 사용수량과 에너지 사용량 관계

그림 78. 보통 도시 여건에서 변수 변동에 따른 유수수량과 에너지 사용량 관계

그림 79. 보통 도시 여건에서 변수 변동에 따른 실 사용수량과 에너지 사용량 관계

그림 80. 도시 에너지 인텐시티 여건에 따른 총 사용수량과 에너지 사용량 관계

그림 81. 도시 에너지 인텐시티 여건에 따른 유수수량과 에너지 사용량 관계

그림 82. 도시 에너지 인텐시티 여건에 따른 실 사용수량과 에너지 사용량 관계

	EI	Water source (GW ratio)	Population	Water loss	Scenario	Total water use	Total energy use	RW	RC water use	Energy intensity	Energy intensity with RW	Energy intensity with RC
1	Vulnerab le	0.1	5	0.1	V-P5-GR0.1-WL0.1	13.7363	66.4136	12.3626	12.5	4.835	5.372	5.313
2				0.3	V-P5-GR0.1-WL0.3	17.1233	70.3158	11.9863	12.5	4.106	5.866	5.625
3				0.5	V-P5-GR0.1-WL0.5	22.7273	76.7722	11.3636	12.5	3.378	6.756	6.142
4			25	0.1	V-P25-GR0.1-WL0.1	68.6813	332.068	61.8132	62.5	4.835	5.372	5.313
5				0.3	V-P25-GR0.1-WL0.3	85.6164	351.579	59.9315	62.5	4.106	5.866	5.625
6				0.5	V-P25-GR0.1-WL0.5	113.636	383.861	56.8182	62.5	3.378	6.756	6.142
7			50	0.1	V-P50-GR0.1-WL0.1	137.363	664.136	123.626	125	4.835	5.372	5.313
8				0.3	V-P50-GR0.1-WL0.3	171.233	703.158	119.863	125	4.106	5.866	5.625
9				0.5	V-P50-GR0.1-WL0.5	227.273	767.722	113.636	125	3.378	6.756	6.142
10		0.5	5	0.1	V-P5-GR0.5-WL0.1	13.7363	67.073	12.3626	12.5	4.883	5.425	5.366
11				0.3	V-P5-GR0.5-WL0.3	17.1233	71.1378	11.9863	12.5	4.154	5.935	5.691
12				0.5	V-P5-GR0.5-WL0.5	22.7273	77.8631	11.3636	12.5	3.426	6.852	6.229
13			25	0.1	V-P25-GR0.5-WL0.1	68.6813	335.365	61.8132	62.5	4.883	5.425	5.366
14				0.3	V-P25-GR0.5-WL0.3	85.6164	355.689	59.9315	62.5	4.154	5.935	5.691
15				0.5	V-P25-GR0.5-WL0.5	113.636	389.315	56.8182	62.5	3.426	6.852	6.229
16			50	0.1	V-P50-GR0.5-WL0.1	137.363	670.73	123.626	125	4.883	5.425	5.366
17				0.3	V-P50-GR0.5-WL0.3	171.233	711.378	119.863	125	4.154	5.935	5.691
18				0.5	V-P50-GR0.5-WL0.5	227.273	778.631	113.636	125	3.426	6.852	6.229
19		0.9	5	0.1	V-P5-GR0.9-WL0.1	13.7363	67.7323	12.3626	12.5	4.931	5.479	5.419
20				0.3	V-P5-GR0.9-WL0.3	17.1233	71.9597	11.9863	12.5	4.202	6.003	5.757
21				0.5	V-P5-GR0.9-WL0.5	22.7273	78.954	11.3636	12.5	3.474	6.948	6.316
22			25	0.1	V-P25-GR0.9-WL0.1	68.6813	338.662	61.8132	62.5	4.931	5.479	5.419
23				0.3	V-P25-GR0.9-WL0.3	85.6164	359.798	59.9315	62.5	4.202	6.003	5.757
24				0.5	V-P25-GR0.9-WL0.5	113.636	394.77	56.8182	62.5	3.474	6.948	6.316
25			50	0.1	V-P50-GR0.9-WL0.1	137.363	677.323	123.626	125	4.931	5.479	5.419
26				0.3	V-P50-GR0.9-WL0.3	171.233	719.597	119.863	125	4.202	6.003	5.757
27				0.5	V-P50-GR0.9-WL0.5	227.273	789.54	113.636	125	3.474	6.948	6.316

표 81. 도시 물순환 시스템 변수 변동 시나리오별 물-에너지 사용량 및 효율

	EI	Water source (GW ratio)	Population	Water loss	Scenario	Total water use	Total energy use	RW	RC water use	Energy intensity	Energy intensity with RW	Energy intensity with RC
28	Normal	0.1	5	0.1	N-P5-GR0.1-WL0.1	13.7363	57.6175	12.3626	12.5	4.195	4.661	4.609
29				0.3	N-P5-GR0.1-WL0.3	17.1233	60.3749	11.9863	12.5	3.526	5.037	4.830
30				0.5	N-P5-GR0.1-WL0.5	22.7273	64.9371	11.3636	12.5	2.857	5.714	5.195
31			25	0.1	N-P25-GR0.1-WL0.1	68.6813	288.088	61.8132	62.5	4.195	4.661	4.609
32				0.3	N-P25-GR0.1-WL0.3	85.6164	301.874	59.9315	62.5	3.526	5.037	4.830
33				0.5	N-P25-GR0.1-WL0.5	113.636	324.685	56.8182	62.5	2.857	5.714	5.195
34			50	0.1	N-P50-GR0.1-WL0.1	137.363	576.175	123.626	125	4.195	4.661	4.609
35				0.3	N-P50-GR0.1-WL0.3	171.233	603.749	119.863	125	3.526	5.037	4.830
36				0.5	N-P50-GR0.1-WL0.5	227.273	649.371	113.636	125	2.857	5.714	5.195
37		0.5	5	0.1	N-P5-GR0.5-WL0.1	13.7363	58.2768	12.3626	12.5	4.243	4.714	4.662
38				0.3	N-P5-GR0.5-WL0.3	17.1233	61.1968	11.9863	12.5	3.574	5.106	4.896
39				0.5	N-P5-GR0.5-WL0.5	22.7273	66.028	11.3636	12.5	2.905	5.810	5.282
40			25	0.1	N-P25-GR0.5-WL0.1	68.6813	291.384	61.8132	62.5	4.243	4.714	4.662
41				0.3	N-P25-GR0.5-WL0.3	85.6164	305.984	59.9315	62.5	3.574	5.106	4.896
42				0.5	N-P25-GR0.5-WL0.5	113.636	330.14	56.8182	62.5	2.905	5.810	5.282
43			50	0.1	N-P50-GR0.5-WL0.1	137.363	582.768	123.626	125	4.243	4.714	4.662
44				0.3	N-P50-GR0.5-WL0.3	171.233	611.968	119.863	125	3.574	5.106	4.896
45				0.5	N-P50-GR0.5-WL0.5	227.273	660.28	113.636	125	2.905	5.810	5.282
46		0.9	5	0.1	N-P5-GR0.9-WL0.1	13.7363	58.9362	12.3626	12.5	4.291	4.767	4.715
47				0.3	N-P5-GR0.9-WL0.3	17.1233	62.0187	11.9863	12.5	3.622	5.174	4.961
48				0.5	N-P5-GR0.9-WL0.5	22.7273	67.1189	11.3636	12.5	2.953	5.906	5.370
49			25	0.1	N-P25-GR0.9-WL0.1	68.6813	294.681	61.8132	62.5	4.291	4.767	4.715
50				0.3	N-P25-GR0.9-WL0.3	85.6164	310.094	59.9315	62.5	3.622	5.174	4.962
51				0.5	N-P25-GR0.9-WL0.5	113.636	335.595	56.8182	62.5	2.953	5.906	5.370
52			50	0.1	N-P50-GR0.9-WL0.1	137.363	589.362	123.626	125	4.291	4.767	4.715
53				0.3	N-P50-GR0.9-WL0.3	171.233	620.187	119.863	125	3.622	5.174	4.961
54				0.5	N-P50-GR0.9-WL0.5	227.273	671.189	113.636	125	2.953	5.906	5.370
55	Robust	0.1	5	0.1	R-P5-GR0.1-WL0.1	13.7363	53.1001	12.3626	12.5	3.866	4.295	4.248
56				0.3	R-P5-GR0.1-WL0.3	17.1233	55.2478	11.9863	12.5	3.226	4.609	4.420

	EI	Water source (GW ratio)	Population	Water loss	Scenario	Total water use	Total energy use	RW	RC water use	Energy intensity	Energy intensity with RW	Energy intensity with RC
57				0.5	R-P5-GR0.1-WL0.5	22.7273	58.8013	11.3636	12.5	2.587	5.175	4.704
58			25	0.1	R-P25-GR0.1-WL0.1	68.6813	265.501	61.8132	62.5	3.866	4.295	4.248
59				0.3	R-P25-GR0.1-WL0.3	85.6164	276.239	59.9315	62.5	3.226	4.609	4.420
60				0.5	R-P25-GR0.1-WL0.5	113.636	294.007	56.8182	62.5	2.587	5.175	4.704
61			50	0.1	R-P50-GR0.1-WL0.1	137.363	531.001	123.626	125	3.866	4.295	4.248
62				0.3	R-P50-GR0.1-WL0.3	171.233	552.478	119.863	125	3.226	4.609	4.420
63				0.5	R-P50-GR0.1-WL0.5	227.273	588.013	113.636	125	2.587	5.175	4.704
64		0.5	5	0.1	R-P5-GR0.5-WL0.1	13.7363	53.7594	12.3626	12.5	3.914	4.349	4.301
65				0.3	R-P5-GR0.5-WL0.3	17.1233	56.0697	11.9863	12.5	3.274	4.678	4.486
66				0.5	R-P5-GR0.5-WL0.5	22.7273	59.8922	11.3636	12.5	2.635	5.271	4.791
67			25	0.1	R-P25-GR0.5-WL0.1	68.6813	268.797	61.8132	62.5	3.914	4.349	4.301
68				0.3	R-P25-GR0.5-WL0.3	85.6164	280.349	59.9315	62.5	3.274	4.678	4.486
69				0.5	R-P25-GR0.5-WL0.5	113.636	299.461	56.8182	62.5	2.635	5.271	4.791
70			50	0.1	R-P50-GR0.5-WL0.1	137.363	537.594	123.626	125	3.914	4.349	4.301
71				0.3	R-P50-GR0.5-WL0.3	171.233	560.697	119.863	125	3.274	4.678	4.486
72				0.5	R-P50-GR0.5-WL0.5	227.273	598.922	113.636	125	2.635	5.271	4.791
73		0.9	5	0.1	R-P5-GR0.9-WL0.1	13.7363	54.4188	12.3626	12.5	3.962	4.402	4.354
74				0.3	R-P5-GR0.9-WL0.3	17.1233	56.8917	11.9863	12.5	3.322	4.746	4.551
75				0.5	R-P5-GR0.9-WL0.5	22.7273	60.9831	11.3636	12.5	2.683	5.367	4.879
76			25	0.1	R-P25-GR0.9-WL0.1	68.6813	272.094	61.8132	62.5	3.962	4.402	4.354
77				0.3	R-P25-GR0.9-WL0.3	85.6164	284.458	59.9315	62.5	3.322	4.746	4.551
78				0.5	R-P25-GR0.9-WL0.5	113.636	304.916	56.8182	62.5	2.683	5.367	4.879
79			50	0.1	R-P50-GR0.9-WL0.1	137.363	544.188	123.626	125	3.962	4.402	4.354
80				0.3	R-P50-GR0.9-WL0.3	171.233	568.917	119.863	125	3.322	4.746	4.551
81				0.5	R-P50-GR0.9-WL0.5	227.273	609.831	113.636	125	2.683	5.367	4.879

다. 인구 변동

도시 에너지 인텐시티가 보통, 원수의 지하수 비율이 50%, 물손실이 0.3이인 경우에 인구 의 변동에 따른 총 에너지 사용량, 총 물 사용량, 총 유수수량, 실 용수 사용량과 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인텐시티의 변동된 값은 [표 82]와 [그림 83-85]에 나타나 있다. 해당 경우 도시의 인구가 증가하면서(5만, 25만, 50만) 용수와 에너지의 사용량은 인구 증가와 비례해서 증가하였다. 에너지 인텐시티, 유수수량 에너지 인텐시티, 사용수량 에너지 인텐시티의 값은 각각 3.574 kWh/m³, 5.106 kWh/m³, 4.896 kWh/m³으로 인구 변화에 상관없이 일정한 값을 나타내었다. 즉 인구 증가에 따라 총량의 변동은 나타났지만, 효율측면에는 변동이 없는 것으로 나타났다. LPCD의 변동 또 한 인구 변동과 유사한 결과를 나타낼 것으로 추측된다. 인구증가와 lpcd와 같은 물 순환 시스템에서 용수 사용량과 관계있는 변수들은 물과 에너지 관점에 총량에는 변동을 유발 하나, 효율적인 측면에서는 변동이 발생하지 않음을 알 수 있었다.

EI	Water source (GW ratio)	Populat ion	Water loss	Total water use	Total energy use	RW	RC water use	Energy intensit y	Energy intensit y with RW	Energy intensit y with RC
Normal	0.5	5	0.3	17.1233	61.1968	11.9863	12.5	3.574	5.106	4.896
Normal	0.5	25	0.3	85.6164	305.984	59.9315	62.5	3.574	5.106	4.896
Normal	0.5	50	0.3	171.233	611.968	119.863	125	3.574	5.106	4.896

표 82. 도시 인구 변동에 따른 물 에너지 사용량 및 효율

그림 83. 도시 인구변동에 따른 총 사용수량과 에너지 사용량 관계

그림 84. 도시 인구변동에 따른 유수수량과 에너지 사용량 관계

그림 85. 도시 인구변동에 따른 실 사용수량과 에너지 사용량 관계

라. 지하수 취수율 변동

도시 에너지 인텐시티가 보통, 물손실이 0.3인 경우에 인구별로 지하수 취수 비율이 0.1, 0.5, 0.9로 변동할 때 총 에너지 사용량, 총 사용수량, 총 유수수량, 실 사용수량과 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인텐시티의 변동된 값은 [표 83] 및 [그림 86-88]에 나타나 있다.

동일한 인구의 도시에서 지하수 취수 비율이 증가하더라도 총 사용수량, 총 유수수량, 실 사용수량의 변동은 발생하지 않았다. 그러나 지하수를 취수하는 경우가 지표수를 취수하 는 경우에 비해 더 많은 에너지를 필요로 하므로 필요로 하는 총 에너지의 양에는 변동 이 발생하였다. 인구가 25만인 경우 지하수 취수 비율이 0.1, 0.5, 0.9인 경우 에너지 인텐 시티는 각각 3.526 kWh/m³, 3.574 kWh/m³, 3.622 kWh/m³로 소폭 증가하였다. 지하수 취 수 비율 0.1을 기준으로 0.5, 0.9의 증가율은 각각 1.36%, 2.72%이었다. 유수수량 에너지 인텐시티도 동일한 조건에서 에너지 인텐시티와 동일하게 각각 1.37%, 2.72% 증가하였다. 실 사용수량 에너지 인텐시티의 증가율은 1.37%, 2.73%이었으며 이는 다른 인텐시티 변 수들과 유사한 결과이다.

지하수 취수량 증가와 같이 도시 물순환 시스템에서 에너지 효율과 관련 있는 변수는 총 용수 사용량에는 변동을 미치지는 않지만 효율 측면에서는 변동을 유발한다.

EI	Water source (GW ratio)	Popula tion	Water loss	Total water use	Total energy use	RW	RC water use	Energy intensit y	Energy intensit y with RW	Energy intensit y with RC
Normal	0.1	5	0.3	17.1233	60.3749	11.9863	12.5	3.526	5.037	4.830
Normal	0.1	25	0.3	85.6164	301.874	59.9315	62.5	3.526	5.037	4.830
Normal	0.1	50	0.3	171.233	603.749	119.863	125	3.526	5.037	4.830
Normal	0.5	5	0.3	17.1233	61.1968	11.9863	12.5	3.574	5.106	4.896
Normal	0.5	25	0.3	85.6164	305.984	59.9315	62.5	3.574	5.106	4.896
Normal	0.5	50	0.3	171.233	611.968	119.863	125	3.574	5.106	4.896
Normal	0.9	5	0.3	17.1233	62.0187	11.9863	12.5	3.622	5.174	4.961
Normal	0.9	25	0.3	85.6164	310.094	59.9315	62.5	3.622	5.174	4.962
Normal	0.9	50	0.3	171.233	620.187	119.863	125	3.622	5.174	4.961

표 83. 도시 지하수 취수율 변동에 따른 물 에너지 사용량 및 효율

그림 86. 도시 지하수 취수율 변동에 따른 총 사용수량과 에너지 사용량 관계

그림 87. 도시 지하수 취수율 변동에 따른 유수수량과 에너지 사용량 관계

그림 88. 도시 지하수 취수율 변동에 따른 실 사용수량과 에너지 사용량 관계

마. 에너지 효율 변동

지하수 취수 비율이 0.5, 물손실이 0.3인 경우에 인구별로 도시 물순환 시스템의 에너지 인텐시티가 취약, 보통, 강인의 상태일 때 총 에너지 사용량, 총 사용수량, 총 유수수량, 실 사용수량과 에너지 인텐시티, 물손실수량 에너지 인텐시티, 실 사용수량 에너지 인텐 시티의 변동된 값은 [표 84] 및 [그림 89-91]에 나타나 있다.

동일한 인구의 도시에세 에너지 인텐시티가 증가하더라도 총 사용수량, 총 유수수량, 실 사용수량의 변동은 발생하지 않았다. 그러나 도시 물순환 시스템의 효율 및 구조에 따른 에너지 인텐시티가 감소하면서 동일한 물을 공급하는데 필요로 하는 에너지는 감소하는 경향을 나타내었다. 인구 25만의 경우를 살펴보면 취약, 보통, 강인의 도시에 따른 에너 지는 355.689 MWh, 305.98 MWh, 280.349 MWh를 각각 나타내었다. 취약한 도시를 기준 으로 보통 그리고 강인한 도시의 에너지 인텐시티는 13.96%, 21.18%가 감소하는 것으로 분석되었다. 유수수량 에너지 인텐시티의 감소율도 13.97%, 21.18%로 에너지 인텐시티와 거의 동일한 감소율을 나타내었다. 실 사용수량 에너지 인텐시티도 흡사한 13.97%, 21.17%의 감소율을 보여주었다. 도시 물순환 시스템의 각 세부 요소별 에너지 인텐시티의 변동은 지하수 추수율 변동과 동일하게 총 용수 사용량에 변동을 미치지는 않지만 효율적인 측면에서 변동을 유발하는 것을 알 수 있었다.

	impact	status								
EI	Water source(GW ratio)	Popula tion	Water loss	Total water use	Total energy use	RW	RC water use	Energy intensi ty	Energy intensi ty with RW	Energy intensi ty with RC
Vulner able	0.5	5	0.3	17.123 3	71.137 8	11.986 3	12.5	4.154	5.935	5.691
Vulner able	0.5	25	0.3	85.616 4	355.68 9	59.931 5	62.5	4.154	5.935	5.691
Vulner able	0.5	50	0.3	171.23 3	711.37 8	119.86 3	125	4.154	5.935	5.691
Norma l	0.5	5	0.3	17.123 3	61.196 8	11.986 3	12.5	3.574	5.106	4.896
Norma l	0.5	25	0.3	85.616 4	305.98 4	59.931 5	62.5	3.574	5.106	4.896
Norma l	0.5	50	0.3	171.23 3	611.96 8	119.86 3	125	3.574	5.106	4.896
Robust	0.5	5	0.3	17.123 3	56.069 7	11.986 3	12.5	3.274	4.678	4.486
Robust	0.5	25	0.3	85.616 4	280.34 9	59.931 5	62.5	3.274	4.678	4.486
Robust	0.5	50	0.3	171.23 3	560.69 7	119.86 3	125	3.274	4.678	4.486

표 84. 도시 에너지 인텐시티 여건 변동에 따른 물 에너지 사용량 및 효율

그림 89. 에너지 인텐시티 여건 변동에 따른 총 사용수량과 에너지 사용량 관계

그림 90. 에너지 인텐시티 여건 변동에 따른 유수수량과 에너지 사용량 관계

그림 91. 에너지 인텐시티 여건 변동에 따른 실 사용수량과 에너지 사용량 관계

바. 유수율 변동

도시 에너지 인텐시티가 보통, 지하수 취수 비율이 0.5이인 경우에 인구별로 물손실이 0.1, 0.3, 0.5로 변동할 때 총 에너지 사용량, 총 사용수량, 총 유수수량, 실 사용수량과 에 너지 인텐시티, 물손실수량 에너지 인텐시티, 실 사용수량 에너지 인텐시티의 변동된 값 은 [표 85] 및 [그림 92-94]에 나타나 있다.

인구가 일정한 경우 물손실이 증가함에 따라 총 사용수량과 총 에너지 사용량은 증가하 였다. 인구가 25만명의 경우 물손실이 0.1, 0.3, 0.5로 증가함에 따라 총 사용수량은 68.7 Mm³, 85.6 Mm³, 113.6 Mm³으로 증가하였다. 또한 에너지 인텐시티의 경우 4.243 kWh/m³, 3.574 kWh/m³, 2.905 kWh/m³로 감소하였다. 유수수량의 경우 물손실이 증가하면서 약간 의 감소가 발생하였으며, 에너지 인텐시티는 반대로 4.714 kWh/m³, 5.106 kWh/m³, 5.810 kWh/m³로 증가하였다. 실사용량의 경우 물손실에 상관업이 사용량에 변동은 없었으며, 실사용량 에너지 인텐시티도 유수수량 에너지 인텐시티와 같이 물손실이 증가하면서 4.662 kWh/m³, 4.896 kWh/m³, 5.282 kWh/m³로 증가하였다.

즉 총 사용수량과 에너지 인텐시티 관점에서 물손실에 따른 변동을 살펴보면 물손실이 증가하는 상황에서 양적인 관점에서 증가하였으며, 효율적인 측면에서고 감소하는 모습 을 보여주었다. 이에 따라 도시 물순환 시스템을 총 사용수량 및 에너지 인텐시티의 관 점에서 살펴볼 경우, 누수율의 증가에 따라 시스템이 개선되는 것과 같은 착시효과가 의 사결정자에세 보여질 수 있다. 이에 따라 도시 물순환 시스템을 분석하는 데는 총 사용 수량에 기반을 둔 에너지 인텐시티를 분석하는 것은 도시별로 물손실이 차이가 있거나, 도시에서 물손실의 변동이 있는 경우에는 적합하지 않는 것으로 판단되었다.

유수수량과 유수수량 에너지 인텐시티 관점에서 물손실 변동에 따른 변동은 양적인 측면 에서 약감의 감소와, 효율적인 측면에서 증가를 확인할 수 있었다.

EI	Water source(GW ratio)	Popula tion	Water loss	Total water use	Total energy use	RW	RC water use	Energy intensi ty	Energy intensi ty with RW	Energy intensi ty with RC
Normal	0.5	5	0.1	13.7363	58.2768	12.3626	12.5	4.243	4.714	4.662
Normal	0.5	5	0.3	17.1233	61.1968	11.9863	12.5	3.574	5.106	4.896
Normal	0.5	5	0.5	22.7273	66.028	11.3636	12.5	2.905	5.810	5.282
Normal	0.5	25	0.1	68.6813	291.384	61.8132	62.5	4.243	4.714	4.662
Normal	0.5	25	0.3	85.6164	305.984	59.9315	62.5	3.574	5.106	4.896
Normal	0.5	25	0.5	113.636	330.14	56.8182	62.5	2.905	5.810	5.282
Normal	0.5	50	0.1	137.363	582.768	123.626	125	4.243	4.714	4.662
Normal	0.5	50	0.3	171.233	611.968	119.863	125	3.574	5.106	4.896
Normal	0.5	50	0.5	227.273	660.28	113.636	125	2.905	5.810	5.282

표 85. 도시 물손실 변동에 따른 물 에너지 사용량 및 효율

그림 92. 물손실 변동에 따른 총 사용수량과 에너지 사용량 관계

그림 93. 물손실 변동에 따른 유수수량과 에너지 사용량 관계

그림 94. 물손실 변동에 따른 실 사용수량과 에너지 사용량 관계
2.8.2 도시 분류 가이드라인

2.7.2 절에서는 기존 문헌들에서 제시된 도시 물순환 시스템의 각 단계별 에너지 인텐시 티 값에 따라서 총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티 및 실 사용수 량 에너지 인텐시티 관점에서 도시를 분류하였다. 제시된 도시 분류는 해당 도시의 현재 도시 물순환 시스템의 물-에너지 넥서스 관점에서 자원의 효율적인 이용 수준을 파악하 는데 유용할 것이다. 또한 시간에 따른 도시의 효율 변동의 궤적을 추적할 수 있어 도시 물순환 시스템의 전략 및 실행계획을 수립하는데 활용될 수 있다. 문헌 조사에 따라서 도시 물순환 시스템의 각각의 단계별 공정별 에너지 인텐시티의 일사분위수, 중위값, 삼 사분위수 값으로 구성된 모델을 일정 인구(5만, 25만, 50만), 지하수 취수비율(50%) 및 물 손실(0.3)의 경우에 분석하였다. 분석된 결과에 따른 총 사용수량, 유수수량 및 실 사용수 량 에너지 인텐시티 관점의 도시 분류는 [표 86]과 [그림 95-97]에 제시된 바와 같다. 도 시는 크게 뛰어남(Excellent), 좋음(Good), 좋지 않음(Poor), 나쁨(Bad)의 4가지 단계로 구분 하였다.

표 86. 도시의 총 사용수량, 유수수량, 실 사용수량 에너지 인텐시티에 따른 분류 범위 값

	총 사용수량 EI	유수수량 EI	실 사용수량 EI
Excellent	~ 3.274	~ 4.678	~ 4.486
Good	3.274 ~ 3.574	4.678 ~ 5.106	4.486 ~ 4.896
Poor	3.574 ~ 4.154	5.106 ~ 5.935	4.896 ~ 5.691
Bad	4 154 ~	5 935 ~	5.691~

그림 95. 총 사용수량 에너지 인텐시티 기준 도시 분류

그림 96. 유수수량 에너지 인텐시티 기준 도시 분류

그림 97. 실 사용수량 에너지 인텐시티 기준 도시 분류

2.8.3 외부영향 및 운영효율 변동에 따른 시나리오 분석

가. 시나리오 설정

2.7.3절에서는 해당 도시의 여건에 따라서 도시 물순환 시스템의 외부 영향 및 운영효율 변동 시나리오에 따른 물-에너지 자원의 사용량 및 효율의 변동을 10년 기간 동안 분석 하였다. 외부사항 변동 시나리오는 도시 물순환 시스템 관리자가 제어할 수 없는 기후변 화와 도시화 등으로 인하여 도시 물순환 시스템이 변동되는 경우를 의미하며, 운영효율 관리 시나리오는 반대로 도시 물순환 시스템 관리자의 노력 또는 부주의로 인해 도시 물 순환 시스템이 개선 또는 악화되는 경우를 나타낸다. 도시 여건, 외부영향 및 운영효율 변동 시나리오 분석 결과를 통해 도시 물순환 시스템 관련 의사 결정권자는 본인들의 시 스템이 어떻게 변동될지 예측할 수 있으며, 이에 따라 효율적인 전략 및 프로그램을 수 립할 수 있다.

우선적으로 해당 도시의 여건은 [표 87]에서 나타난 바와 같이 인구(5만, 25만, 50만)와 해당 도시 에너지 인텐시티의 여건(취약, 보통, 강건)에 따라 9개로 분류하였다. 또한 해 당 여건에서 LPCD, 물손실 및 취수원의 조건은 각각 250 lpcd, 0.3, 지하수 50%의 조건을 사용하였다.

변수	입력값
인구	5만명, 25만명, 50만명
LPCD	250
물손실	0.3 (명목손실 10%)
취수원	지하수 50% & 지표수 50%
도시 에너지 인텐시티 여건	robust, normal, vulnerable

표 87. 시나리오 분석을 위한 해당 도시 여건

해당 도시 여건별로 [표 88]에서 나타난 바와 같이 외부사항 변동 2개(변동 없음, 변동 있음)와 [표 89]에서와 같이 운영효율 관리 3개(개선, 유지, 악화)를 고려하였다. 이에 따라 총 54개의 시나리오를 분석하였다.

외부 영향에서 변동이 없는 경우는 기후변화가 거의 없고 도시화가 심하지 않은 경우로 취수원 중에 지하수 비율과 지하수 수위, 도수관로 길이는 변동이 없는 것으로 가정하였 다. 그리고 도시의 인구 증가는 1%/년으로 설정하였다. 외부 영향에 변동이 있는 경우는 도시가 기후변화에 큰 영향을 받으며 도시화가 급격하게 진행되고 있는 시나리오이다. 이 경우 기존의 수원에서 원수를 공급하는 것은 어려워져서 담수를 통해 공급하고, 지하 수의 수위는 지속적으로 감소하며, 다른 지역에서 광역 용수를 수입하는 것으로 시나리 오를 설정하였다. 그리고 해당 경우 인구증가율은 5%/년으로 가정하였다. 운영효율의 변동으로 물손실, LPCD, 그리고 온수 사용 비율을 고려하였다. 운영효율이 개선이 되는 경우 물손실은 10년 동안 0.3에서 0.1로 개선이 되었으며, 수요 관리를 통하 여서 LPCD는 250에서 200으로 감소하는 것으로 가정하였다. 그리고 온수 사용 비율은 초 기에 비해 10년 후에는 10% 감소하는 것으로 가정하였다. 운영 효율이 악화되는 경우는 이와 반대로 물손실이 0.3에서 0.5로 증가하고, LPCD 또한 250에서 300으로 증가하였으 며, 온수 사용 비율도 10% 증가하는 시나리오이다. 그리고 유지하는 경우는 초기의 값에 서 변동이 없는 경우이다. 그리고 모든 경우에서 물손실시 명목손실은 전체 물손실의 10%로 가정하였다.

외부변동 원인	변수	외부 영향 없음	외부 영향 있음	변동시기
	취수원	지하수 50% 지표스 50%	지하수 40% 지표수 40%	6년차
기후변화		ЛшТ 30%	담수 20%	
	지하수위감소	30m	30m -> 45m	0~10년
	광역용수 수입	도수관로 길이:	도수관로 길이:	3년차
		100km	500km	
도시화	인구증가	인구증가 1%/년	인구증가 5%/년	0~10년

표 88. 외부 영향 시나리오 시 매개변수 설정 값

표 89. 운영 효율 변동 시나리오 시 매개변수 설정 값

변수	개선	유지	악화	변동시기
	0.1	0.3	0.5	0 1013
굴끈실	(명목손실 10%)	(명목손실 10%)	(명목손실 10%)	0~10년
lpcd	200	250	300	0~10년
온수사용비율	10% 감소	유지	10% 증가	0~10년

나. 시나리오 별 결과

도시 에너지 인텐시티 여건 분류 3가지(취약, 보통, 강함), 인구 분류 3가지(5만, 25만, 50 만), 외부영향 분류 2가지(외부 영향 없음, 외부 영향 있음), 운영효율 분류 3가지(개선, 유지, 악화)의 총 54가지 시나리오에 따른 총 사용수량, 유수수량, 실 사용수량 및 총 에 너지 사용량의 10년간 변동은 [표 90]에 나타난바와 같다. 그리고 시나리오별 총 사용수 량과 에너지 사용량의 관계는 [그림 99-101]에 제시되어 있으며, 실 사용수량과 에너지의 사용량 관계는 [그림 102-104]와 같다.

보다 자세한 분석을 위하여 에너지 인텐시티 여건이 보통이며 인구가 25만인 경우에 외 부영향과 운영효율의 변동에 따른 총 사용수량과 에너지의 관계를 [그림 97]에 나타내었 다. 그림에서 명백히 나타나듯이 기후변화 또는 도시화와 같은 외부 영향이 있는 시나리 오(E2_P2_I2_O1, E2_P2_I2_O2, E2_P2_I2_O3)에서는 총 사용수량 에너지 인텐시티 또는 실 사용수량 에너지 인텐시티 값으로 표현되어지는 효율적인 측면에서 크게 악화가 되는 것 으로 확인할 수 있었다. 기존의 Group II(Good)과 Group III(Poor)의 사이에 속해있던 총 사용수량 에너지 인텐시티는 외부 영향이 있는 경우 Group IV(Bad)로 속하게 되었다. 외부영향이 있으나 운영효율을 개선한 시나리오(E2_P2_I2_O1)에서는 총 사용수량 에너지 인텐시티 값은 증가하였으나, 효율 개선으로 인해 총 사용수량에 변동은 크지 않는 것으 로 나타났다. 그러나 운영효율이 악화되는 시나리오(E2_P2_I2_O1)에서는 총 사용수량의 에너지 인틴시티 값의 증가뿐만 아니라 총 사용수량도 급격하게 증가하여 양적인 측면과 질적인 측면 모두에서 악화되는 것을 확인할 수 있었다.

외부의 영향이 없는 시나리오(E2_P2_I1_O1, E2_P2_I1_O2, E2_P2_I1_O3)에서는 총 사용수 량 에너지 인텐시티의 값은 변화가 크지 않음을 알 수 있었다. 외부 영향이 없으며 운영 효율에도 변동이 없는 시나리오(E2_P2_I1_O2)에서는 총 사용수량 에너지 인텐시티의 값 은 그대로 유지하면서 총 사용수량만 증가하는 것을 확인할 수 있었다. 그리고 운영효율 은 개선하는 시나리오(E2_P2_I1_O1)에서는 총 사용수량이 감소하는 경향을 확인할 수 있 었다. 그러나 총 에너지 사용수량 에너지 인텐시티 관점에서 살펴보았을 때 Group III(Poor)로 속해지며 효율이 악화되는 결과를 도출하였다. 이와 유사하게 운영효율이 악화 되는 시나리오(E2_P2_I1_O3)에서는 총 사용수량이 증가하였으나 효율적인 측면에서는 Group I(Excellent)로 점차 개선되는 것으로 해석되었다.

이와 같이 결과를 통해 부정적인 외부 영향은 도시 물순환 시스템의 효율적인 측면을 악 화시키며, 부정적인 운영 효율은 양적인 측면에서 악영향을 미치는 것을 알 수 있었다. 그리고 총 사용수량과 에너지 사용량을 분석하는 경우 양적인 측면 분석에서는 적합한 방법이지만 효율적인 측면에서는 왜곡된 현상이 나타남을 확인 할 수 있었다.

앞에서 언급된 총 사용수량과 에너지 사용량을 통해 분석하는 경우 물손실에 따른 왜곡 이 발생될 수 있으며, 이와 같은 단점을 극복하기 위해 [그림 98]에서와 같이 실 사용수 량과 에너지 사용량에 관계를 분석할 수 있다.

실 사용수량과 에너지 사용량의 관계 또한 총 사용수량과 에너지 사용량의 관계와 유사 하가 외부 영향은 효율적인 측면에 악영향을 미치며, 운영 효율의 악화는 양적인 측면에 악영향을 미침을 알 수 있었다. 또한, 이 경우 누수율에 따른 효율 개선의 왜곡이 없음을 확인할 수 있었다.

그림 98. 인구 25만의 보통의 도시에서 외부영향 및 운영효율 변화 시나리오에 따른 총 사용수량과 에너지 관계

그림 99. 인구 25만의 보통의 도시에서 외부영향 및 운영효율 변화 시나리오에 따른 실 사용수량과 에너지 관계

그림 100. 취약한 도시에서 시나리오에 따른 총 사용수량과 에너지 관계

그림 101. 보통의 도시에서 시나리오에 따른 총 사용수량과 에너지 관계

그림 102. 강건한 도시에서 시나리오에 따른 총 사용수량과 에너지 관계

그림 103. 취약한 도시에서 시나리오에 따른 실 사용수량과 에너지 관계

그림 104. 보통의 도시에서 시나리오에 따른 실 사용수량과 에너지 관계

그림 105. 강건한 도시에서 시나리오에 따른 실 사용수량과 에너지 관계

표 90.	시나리오에	따른	총	용수사용량,	유수수량,	실	사용량	및	에너지	사용량
-------	-------	----	---	--------	-------	---	-----	---	-----	-----

	EI	Popul ation	Entern al influen ce	O&M efficien cy	Scenari o	Reousrc es	0	1	2	3	4	5	6	7	8	9	10
						TWS	17.1233	18.0864	19.1085	20.1945	21.3498	22.5803	23.8927	25.2946	26.7942	28.4012	30.1261
1				aggrav	V-P1-I1	RW	11.9863	12.2987	12.6116	12.9245	13.2369	13.5482	13.8578	14.165	14.4689	14.7686	15.063
1				ation	-01	RCWU	12.5	12.8775	13.2613	13.6515	14.0482	14.4514	14.8613	15.2779	15.7014	16.1319	16.5693
						TEU	71.1378	74.2348	77.4529	80.7987	84.2798	87.9042	91.6812	95.6206	99.7336	104.033	108.532
						TWS	17.1233	17.2945	17.4675	17.6421	17.8186	17.9967	18.1767	18.3585	18.5421	18.7275	18.9148
0			No	maintai	V-P1-I1	RW	11.9863	12.1062	12.2272	12.3495	12.473	12.5977	12.7237	12.8509	12.9794	13.1092	13.2403
L			INO	n	-02	RCWU	12.5	12.625	12.7513	12.8788	13.0076	13.1376	13.269	13.4017	13.5357	13.6711	13.8078
						TEU	71.1378	71.8491	72.5676	73.2933	74.0262	74.7665	75.5142	76.2693	77.032	77.8023	78.5803
						TWS	17.1233	16.5408	15.9807	15.4414	14.9214	14.4193	13.934	13.4643	13.0091	12.5676	12.1387
0				improv	V-P1-I1	RW	11.9863	11.9094	11.8257	11.7354	11.6387	11.5355	11.4259	11.31	11.1879	11.0595	10.9248
3				ement	-03	RCWU	12.5	12.3725	12.2412	12.106	11.9669	11.8239	11.6767	11.5255	11.37	11.2103	11.0462
		E				TEU	71.1378	69.5254	67.933	66.3587	64.8009	63.2581	61.7288	60.212	58.7065	57.2112	55.7253
		5				TWS	17.1233	18.8027	20.652	22.6901	24.9382	27.4201	30.1629	33.1973	36.5582	40.2854	44.4244
4				aggrav	V-P1-I2	RW	11.9863	12.7858	13.6303	14.5217	15.4617	16.4521	17.4945	18.5905	19.7414	20.9484	22.2122
4				ation	-01	RCWU	12.5	13.3875	14.3325	15.3385	16.4093	17.5489	18.7613	20.0512	21.4231	22.8821	24.4334
						TEU	71.1378	77.2312	83.8331	132.475	144.342	157.292	202.043	220.559	240.853	263.119	287.576
						TWS	17.1233	17.9795	18.8784	19.8223	20.8135	21.8541	22.9468	24.0942	25.2989	26.5638	27.892
F	Vulnerah		Vag	maintai	V-P1-I1	RW	11.9863	12.5856	13.2149	13.8756	14.5694	15.2979	16.0628	16.8659	17.7092	18.5947	19.5244
5	le		Yes	n	-02	RCWU	12.5	13.125	13.7813	14.4703	15.1938	15.9535	16.7512	17.5888	18.4682	19.3916	20.3612
					-02	TEU	71.1378	74.7486	78.5426	118.772	124.773	131.078	160.987	169.094	177.609	186.554	195.948
						TWS	17.1233	17.1959	17.2715	17.3496	17.4293	17.51	17.5908	17.6709	17.7498	17.8264	17.8999
G				improv	V-P1-I1	RW	11.9863	12.381	12.7809	13.1857	13.5949	14.008	14.4244	14.8436	15.2648	15.6872	16.1099
0				ement	-03	RCWU	12.5	12.8625	13.23	13.6021	13.9783	14.3582	14.7411	15.1263	15.5133	15.9011	16.2889
						TEU	71.1378	72.3305	73.524	106.437	107.769	109.095	128.259	129.626	130.97	132.284	133.561
						TWS	85.6164	90.4319	95.5425	100.973	106.749	112.901	119.464	126.473	133.971	142.006	150.63
7				aggrav	V-P2-I1	RW	59.9315	61.4937	63.0581	64.6224	66.1843	67.7409	69.2889	70.8248	72.3444	73.843	75.3151
/				ation	-01	RCWU	62.5	64.3875	66.3065	68.2574	70.2408	72.2569	74.3064	76.3896	78.5071	80.6593	82.8467
						TEU	355.689	371.174	387.264	403.994	421.399	439.521	458.406	478.103	498.668	520.163	542.658
						TWS	85.6164	86.4726	87.3373	88.2107	89.0928	89.9837	90.8836	91.7924	92.7103	93.6374	94.5738
0				maintai	V-P2-I1	RW	59.9315	60.5308	61.1361	61.7475	62.365	62.9886	63.6185	64.2547	64.8972	65.5462	66.2017
0		25	No	n	-02	RCWU	62.5	63.125	63.7563	64.3938	65.0378	65.6881	66.345	67.0085	67.6786	68.3553	69.0389
						TEU	355.689	359.246	362.838	366.466	370.131	373.832	377.571	381.346	385.16	389.012	392.902
						TWS	85.6164	82.7039	79.9034	77.2069	74.6069	72.0967	69.6702	67.3216	65.0457	62.8379	60.6935
				improv	V_D2_I1	RW	59.9315	59.5468	59.1285	58.6772	58.1934	57.6774	57.1295	56.5501	55.9393	55.2973	54.6242
9				ement	-03	RCWU	62.5	61.8625	61.206	60.5302	59.8347	59.1193	58.3836	57.6273	56.85	56.0514	55.2311
						TEU	355.689	347.627	339.665	331.794	324.005	316.29	308.644	301.06	293.532	286.056	278.627

	EI	Popul ation	Entern al influen ce	O&M efficien cy	Scenari o	Reousrc es	0	1	2	3	4	5	6	7	8	9	10
						TWS	85.6164	94.0134	103.26	113.451	124.691	137.101	150.815	165.987	182.791	201.427	222.122
10				aggrav	V-P2-I2	RW	59.9315	63.9291	68.1517	72.6084	77.3084	82.2603	87.4725	92.9525	98.7071	104.742	111.061
10				ation	-01	RCWU	62.5	66.9375	71.6625	76.6927	82.0467	87.7444	93.8067	100.256	107.116	114.41	122.167
						TEU	355.689	386.156	419.166	662.373	721.708	786.459	1010.22	1102.79	1204.26	1315.59	1437.88
						TWS	85.6164	89.8973	94.3921	99.1117	104.067	109.271	114.734	120.471	126.494	132.819	139.46
11			Yog	maintai	V-P2-I1	RW	59.9315	62.9281	66.0745	69.3782	72.8471	76.4895	80.314	84.3297	88.5461	92.9734	97.6221
11			103	n	-02	RCWU	62.5	65.625	68.9063	72.3516	75.9691	79.7676	83.756	87.9438	92.341	96.958	101.806
						TEU	355.689	373.743	392.713	593.862	623.867	655.389	804.935	845.47	888.047	932.769	979.742
						TWS	85.6164	85.9793	86.3577	86.7481	87.1467	87.5498	87.9538	88.3547	88.7488	89.1318	89.4997
12				improv	V-P2-I1	RW	59.9315	61.9051	63.9047	65.9285	67.9744	70.0398	72.1221	74.218	76.3239	78.436	80.5497
12				ement	-03	RCWU	62.5	64.3125	66.15	68.0105	69.8916	71.7908	73.7053	75.6317	77.5664	79.5056	81.4447
						TEU	355.689	361.652	367.62	532.187	538.847	545.473	641.295	648.132	654.851	661.419	667.803
						TWS	171.233	180.864	191.085	201.945	213.498	225.803	238.927	252.946	267.942	284.012	301.261
13				aggrav	V-P3-I1	RW	119.863	122.987	126.116	129.245	132.369	135.482	138.578	141.65	144.689	147.686	150.63
10				ation	-01	RCWU	125	128.775	132.613	136.515	140.482	144.514	148.613	152.779	157.014	161.319	165.693
						TEU	711.378	742.348	774.529	807.987	842.798	879.042	916.812	956.206	997.336	1040.33	1085.32
						TWS	171.233	172.945	174.675	176.421	178.186	179.967	181.767	183.585	185.421	187.275	189.148
14			No	maintai	V-P3-I1	RW	119.863	121.062	122.272	123.495	124.73	125.977	127.237	128.509	129.794	131.092	132.403
				n	-02	RCWU	125	126.25	127.513	128.788	130.076	131.376	132.69	134.017	135.357	136.711	138.078
						TEU	711.378	718.491	725.676	732.933	740.262	747.665	755.142	762.693	770.32	778.023	785.803
						TWS	171.233	165.408	159.807	154.414	149.214	144.193	139.34	134.643	130.091	125.676	121.387
15				improv	V-P3-I1	RW	119.863	119.094	118.257	117.354	116.387	115.355	114.259	113.1	111.879	110.595	109.248
10				ement	-03	RCWU	125	123.725	122.412	121.06	119.669	118.239	116.767	115.255	113.7	112.103	110.462
		50				TEU	711.378	695.254	679.33	663.587	648.009	632.581	617.289	602.12	587.065	572.112	557.253
		00				TWS	171.233	188.027	206.52	226.901	249.382	274.201	301.629	331.973	365.582	402.854	444.244
16				aggrav	V-P3-I2	RW	119.863	127.858	136.303	145.217	154.617	164.521	174.945	185.905	197.414	209.484	222.122
10				ation	-01	RCWU	125	133.875	143.325	153.385	164.093	175.489	187.613	200.512	214.231	228.821	244.334
						TEU	711.378	772.312	838.331	1324.75	1443.42	1572.92	2020.43	2205.59	2408.53	2631.19	2875.76
						TWS	171.233	179.795	188.784	198.223	208.135	218.541	229.468	240.942	252.989	265.638	278.92
17			Yes	maintai	V-P3-I1	RW	119.863	125.856	132.149	138.756	145.694	152.979	160.628	168.659	177.092	185.947	195.244
17			100	n	-02	RCWU	125	131.25	137.813	144.703	151.938	159.535	167.512	175.888	184.682	193.916	203.612
						TEU	711.378	747.486	785.426	1187.72	1247.73	1310.78	1609.87	1690.94	1776.09	1865.54	1959.48
						TWS	171.233	171.959	172.715	173.496	174.293	175.1	175.908	176.709	177.498	178.264	178.999
18				improv	V-P3-I1	RW	119.863	123.81	127.809	131.857	135.949	140.08	144.244	148.436	152.648	156.872	161.099
10				ement	-03	RCWU	125	128.625	132.3	136.021	139.783	143.582	147.411	151.263	155.133	159.011	162.889
						TEU	711.378	723.305	735.24	1064.37	1077.69	1090.95	1282.59	1296.26	1309.7	1322.84	1335.61
19	Normal	5	No	aggrav ation	V-P1-I1 -O1	TWS	17.1233	18.0864	19.1085	20.1945	21.3498	22.5803	23.8927	25.2946	26.7942	28.4012	30.1261

	EI	Popul ation	Entern al influen ce	O&M efficien cy	Scenari o	Reousrc es	0	1	2	3	4	5	6	7	8	9	10
						RW	11.9863	12.2987	12.6116	12.9245	13.2369	13.5482	13.8578	14.165	14.4689	14.7686	15.063
						RCWU	12.5	12.8775	13.2613	13.6515	14.0482	14.4514	14.8613	15.2779	15.7014	16.1319	16.5693
						TEU	61.1968	63.8429	66.588	69.4371	72.3959	75.4704	78.6676	81.9947	85.4601	89.073	92.8436
						TWS	17.1233	17.2945	17.4675	17.6421	17.8186	17.9967	18.1767	18.3585	18.5421	18.7275	18.9148
20				maintai	N-P1-I1	RW	11.9863	12.1062	12.2272	12.3495	12.473	12.5977	12.7237	12.8509	12.9794	13.1092	13.2403
20				n	-02	RCWU	12.5	12.625	12.7513	12.8788	13.0076	13.1376	13.269	13.4017	13.5357	13.6711	13.8078
						TEU	61.1968	61.8088	62.4269	63.0511	63.6816	64.3185	64.9616	65.6113	66.2674	66.93	67.5993
						TWS	17.1233	16.5408	15.9807	15.4414	14.9214	14.4193	13.934	13.4643	13.0091	12.5676	12.1387
21				improv	N-P1-I1	RW	11.9863	11.9094	11.8257	11.7354	11.6387	11.5355	11.4259	11.31	11.1879	11.0595	10.9248
21				ement	-03	RCWU	12.5	12.3725	12.2412	12.106	11.9669	11.8239	11.6767	11.5255	11.37	11.2103	11.0462
						TEU	61.1968	59.8237	58.4642	57.1172	55.7813	54.4557	53.1394	51.8316	50.5316	49.2386	47.9522
						TWS	17.1233	18.8027	20.652	22.6901	24.9382	27.4201	30.1629	33.1973	36.5582	40.2854	44.4244
22				aggrav	N-P1-I2	RW	11.9863	12.7858	13.6303	14.5217	15.4617	16.4521	17.4945	18.5905	19.7414	20.9484	22.2122
22				ation	-01	RCWU	12.5	13.3875	14.3325	15.3385	16.4093	17.5489	18.7613	20.0512	21.4231	22.8821	24.4334
						TEU	61.1968	66.4277	72.0906	119.709	130.46	142.193	173.115	188.919	206.228	225.205	246.033
						TWS	17.1233	17.9795	18.8784	19.8223	20.8135	21.8541	22.9468	24.0942	25.2989	26.5638	27.892
23			Vog	maintai	N-P1-I1	RW	11.9863	12.5856	13.2149	13.8756	14.5694	15.2979	16.0628	16.8659	17.7092	18.5947	19.5244
23			165	n	-02	RCWU	12.5	13.125	13.7813	14.4703	15.1938	15.9535	16.7512	17.5888	18.4682	19.3916	20.3612
						TEU	61.1968	64.3106	67.5827	107.265	112.69	118.39	138.156	145.122	152.438	160.124	168.197
						TWS	17.1233	17.1959	17.2715	17.3496	17.4293	17.51	17.5908	17.6709	17.7498	17.8264	17.8999
24				improv	N-P1-I1	RW	11.9863	12.381	12.7809	13.1857	13.5949	14.008	14.4244	14.8436	15.2648	15.6872	16.1099
24				ement	-03	RCWU	12.5	12.8625	13.23	13.6021	13.9783	14.3582	14.7411	15.1263	15.5133	15.9011	16.2889
						TEU	61.1968	62.2445	63.2904	96.0538	97.2339	98.4055	110.126	111.305	112.461	113.588	114.681
						TWS	85.6164	90.4319	95.5425	100.973	106.749	112.901	119.464	126.473	133.971	142.006	150.63
25				aggrav	N-P2-I1	RW	59.9315	61.4937	63.0581	64.6224	66.1843	67.7409	69.2889	70.8248	72.3444	73.843	75.3151
20				ation	-01	RCWU	62.5	64.3875	66.3065	68.2574	70.2408	72.2569	74.3064	76.3896	78.5071	80.6593	82.8467
						TEU	305.984	319.215	332.94	347.185	361.979	377.352	393.338	409.974	427.301	445.365	464.218
						TWS	85.6164	86.4726	87.3373	88.2107	89.0928	89.9837	90.8836	91.7924	92.7103	93.6374	94.5738
26				maintai	N-P2-I1	RW	59.9315	60.5308	61.1361	61.7475	62.365	62.9886	63.6185	64.2547	64.8972	65.5462	66.2017
20				n	-02	RCWU	62.5	63.125	63.7563	64.3938	65.0378	65.6881	66.345	67.0085	67.6786	68.3553	69.0389
		25	No			TEU	305.984	309.044	312.134	315.256	318.408	321.592	324.808	328.056	331.337	334.65	337.997
						TWS	85.6164	82.7039	79.9034	77.2069	74.6069	72.0967	69.6702	67.3216	65.0457	62.8379	60.6935
						RW	59.9315	59.5468	59.1285	58.6772	58.1934	57.6774	57.1295	56.5501	55.9393	55.2973	54.6242
						RCWU	62.5	61.8625	61.206	60.5302	59.8347	59.1193	58.3836	57.6273	56.85	56.0514	55.2311
27				improv ement	N-P2-I1 -O3	TEU	305.984	299.118	292.321	285.586	278.907	272.279	265.697	259.158	252.658	246.193	239.761

	EI	Popul ation	Entern al influen ce	O&M efficien cy	Scenari o	Reousrc es	0	1	2	3	4	5	6	7	8	9	10
						TWS	85.6164	94.0134	103.26	113.451	124.691	137.101	150.815	165.987	182.791	201.427	222.122
20				aggrav	N-P2-I2	RW	59.9315	63.9291	68.1517	72.6084	77.3084	82.2603	87.4725	92.9525	98.7071	104.742	111.061
20				ation	-01	RCWU	62.5	66.9375	71.6625	76.6927	82.0467	87.7444	93.8067	100.256	107.116	114.41	122.167
						TEU	305.984	332.139	360.453	598.545	652.301	710.964	865.575	944.595	1031.14	1126.03	1230.16
						TWS	85.6164	89.8973	94.3921	99.1117	104.067	109.271	114.734	120.471	126.494	132.819	139.46
20			Vog	maintai	N-P2-I1	RW	59.9315	62.9281	66.0745	69.3782	72.8471	76.4895	80.314	84.3297	88.5461	92.9734	97.6221
23			165	n	-02	RCWU	62.5	65.625	68.9063	72.3516	75.9691	79.7676	83.756	87.9438	92.341	96.958	101.806
						TEU	305.984	321.553	337.914	536.323	563.451	591.951	690.78	725.608	762.192	800.62	840.986
						TWS	85.6164	85.9793	86.3577	86.7481	87.1467	87.5498	87.9538	88.3547	88.7488	89.1318	89.4997
30				improv	N-P2-I1	RW	59.9315	61.9051	63.9047	65.9285	67.9744	70.0398	72.1221	74.218	76.3239	78.436	80.5497
50				ement	-03	RCWU	62.5	64.3125	66.15	68.0105	69.8916	71.7908	73.7053	75.6317	77.5664	79.5056	81.4447
						TEU	305.984	311.223	316.452	480.269	486.169	492.028	550.629	556.525	562.304	567.94	573.403
						TWS	171.233	180.864	191.085	201.945	213.498	225.803	238.927	252.946	267.942	284.012	301.261
31				aggrav	N-P3-I1	RW	119.863	122.987	126.116	129.245	132.369	135.482	138.578	141.65	144.689	147.686	150.63
51				ation	-01	RCWU	125	128.775	132.613	136.515	140.482	144.514	148.613	152.779	157.014	161.319	165.693
						TEU	611.968	638.429	665.88	694.371	723.959	754.704	786.676	819.947	854.601	890.73	928.436
						TWS	171.233	172.945	174.675	176.421	178.186	179.967	181.767	183.585	185.421	187.275	189.148
32			No	maintai	N-P3-I1	RW	119.863	121.062	122.272	123.495	124.73	125.977	127.237	128.509	129.794	131.092	132.403
52			NO	n	-02	RCWU	125	126.25	127.513	128.788	130.076	131.376	132.69	134.017	135.357	136.711	138.078
						TEU	611.968	618.088	624.269	630.511	636.816	643.185	649.616	656.113	662.674	669.3	675.993
						TWS	171.233	165.408	159.807	154.414	149.214	144.193	139.34	134.643	130.091	125.676	121.387
33				improv	N-P3-I1	RW	119.863	119.094	118.257	117.354	116.387	115.355	114.259	113.1	111.879	110.595	109.248
55				ement	-03	RCWU	125	123.725	122.412	121.06	119.669	118.239	116.767	115.255	113.7	112.103	110.462
						TEU	611.968	598.237	584.642	571.172	557.813	544.557	531.394	518.316	505.316	492.386	479.522
		50				TWS	171.233	188.027	206.52	226.901	249.382	274.201	301.629	331.973	365.582	402.854	444.244
34		50		aggrav	N-P3-I2	RW	119.863	127.858	136.303	145.217	154.617	164.521	174.945	185.905	197.414	209.484	222.122
				ation	-01	RCWU	125	133.875	143.325	153.385	164.093	175.489	187.613	200.512	214.231	228.821	244.334
						TEU	611.968	664.277	720.906	1197.09	1304.6	1421.93	1731.15	1889.19	2062.28	2252.05	2460.33
						TWS	171.233	179.795	188.784	198.223	208.135	218.541	229.468	240.942	252.989	265.638	278.92
35				maintai	N-P3-I1	RW	119.863	125.856	132.149	138.756	145.694	152.979	160.628	168.659	177.092	185.947	195.244
			N	n	-02	RCWU	125	131.25	137.813	144.703	151.938	159.535	167.512	175.888	184.682	193.916	203.612
			Yes			TEU	611.968	643.106	675.827	1072.65	1126.9	1183.9	1381.56	1451.22	1524.38	1601.24	1681.97
						TWS	171.233	171.959	172.715	173.496	174.293	175.1	175.908	176.709	177.498	178.264	178.999
						RW	119.863	123.81	127.809	131.857	135.949	140.08	144.244	148.436	152.648	156.872	161.099
36				improv ement	N-P3-I1 -O3	RCWU	125	128.625	132.3	136.021	139.783	143.582	147.411	151.263	155.133	159.011	162.889

	EI	Popul ation	Entern al influen ce	O&M efficien cy	Scenari o	Reousrc es	0	1	2	3	4	5	6	7	8	9	10
						TEU	611.968	622.445	632.904	960.538	972.339	984.055	1101.26	1113.05	1124.61	1135.88	1146.81
						TWS	17.1233	18.0864	19.1085	20.1945	21.3498	22.5803	23.8927	25.2946	26.7942	28.4012	30.1261
37				aggrav	R-P1-I1	RW	11.9863	12.2987	12.6116	12.9245	13.2369	13.5482	13.8578	14.165	14.4689	14.7686	15.063
57				ation	-01	RCWU	12.5	12.8775	13.2613	13.6515	14.0482	14.4514	14.8613	15.2779	15.7014	16.1319	16.5693
						TEU	56.0697	58.4807	60.979	63.5688	66.2548	69.0419	71.9357	74.9424	78.0685	81.3218	84.7103
						TWS	17.1233	17.2945	17.4675	17.6421	17.8186	17.9967	18.1767	18.3585	18.5421	18.7275	18.9148
38			No	maintai	R-P1-I1	RW	11.9863	12.1062	12.2272	12.3495	12.473	12.5977	12.7237	12.8509	12.9794	13.1092	13.2403
50			110	n	-02	RCWU	12.5	12.625	12.7513	12.8788	13.0076	13.1376	13.269	13.4017	13.5357	13.6711	13.8078
						TEU	56.0697	56.6304	57.1967	57.7687	58.3464	58.9299	59.5192	60.1143	60.7155	61.3226	61.9359
						TWS	17.1233	16.5408	15.9807	15.4414	14.9214	14.4193	13.934	13.4643	13.0091	12.5676	12.1387
39				improv	R-P1-I1	RW	11.9863	11.9094	11.8257	11.7354	11.6387	11.5355	11.4259	11.31	11.1879	11.0595	10.9248
55				ement	-03	RCWU	12.5	12.3725	12.2412	12.106	11.9669	11.8239	11.6767	11.5255	11.37	11.2103	11.0462
		5				TEU	56.0697	54.8223	53.5852	52.3573	51.1378	49.926	48.7211	47.5226	46.3299	45.1426	43.9602
						TWS	17.1233	18.8027	20.652	22.6901	24.9382	27.4201	30.1629	33.1973	36.5582	40.2854	44.4244
40				aggrav	R-P1-I2	RW	11.9863	12.7858	13.6303	14.5217	15.4617	16.4521	17.4945	18.5905	19.7414	20.9484	22.2122
40				ation	-01	RCWU	12.5	13.3875	14.3325	15.3385	16.4093	17.5489	18.7613	20.0512	21.4231	22.8821	24.4334
						TEU	56.0697	60.8532	66.0286	113.115	123.287	134.386	153.082	166.969	182.163	198.805	217.052
						TWS	17.1233	17.9795	18.8784	19.8223	20.8135	21.8541	22.9468	24.0942	25.2989	26.5638	27.892
41			Yes	maintai	R-P1-I1	RW	11.9863	12.5856	13.2149	13.8756	14.5694	15.2979	16.0628	16.8659	17.7092	18.5947	19.5244
-11	Robust		105	n	-02	RCWU	12.5	13.125	13.7813	14.4703	15.1938	15.9535	16.7512	17.5888	18.4682	19.3916	20.3612
						TEU	56.0697	58.9272	61.9302	101.329	106.458	111.847	122.51	128.694	135.189	142.012	149.18
						TWS	17.1233	17.1959	17.2715	17.3496	17.4293	17.51	17.5908	17.6709	17.7498	17.8264	17.8999
42				improv	R-P1-I1	RW	11.9863	12.381	12.7809	13.1857	13.5949	14.008	14.4244	14.8436	15.2648	15.6872	16.1099
72				ement	-03	RCWU	12.5	12.8625	13.23	13.6021	13.9783	14.3582	14.7411	15.1263	15.5133	15.9011	16.2889
						TEU	56.0697	57.0451	58.0172	90.7057	91.8099	92.9049	97.8214	98.8923	99.9405	100.961	101.949
						TWS	85.6164	90.4319	95.5425	100.973	106.749	112.901	119.464	126.473	133.971	142.006	150.63
43				aggrav	R-P2-I1	RW	59.9315	61.4937	63.0581	64.6224	66.1843	67.7409	69.2889	70.8248	72.3444	73.843	75.3151
10				ation	-01	RCWU	62.5	64.3875	66.3065	68.2574	70.2408	72.2569	74.3064	76.3896	78.5071	80.6593	82.8467
						TEU	280.349	292.404	304.895	317.844	331.274	345.209	359.679	374.712	390.343	406.609	423.552
						TWS	85.6164	86.4726	87.3373	88.2107	89.0928	89.9837	90.8836	91.7924	92.7103	93.6374	94.5738
44				maintai	R-P2-I1	RW	59.9315	60.5308	61.1361	61.7475	62.365	62.9886	63.6185	64.2547	64.8972	65.5462	66.2017
11		25	No	n	-02	RCWU	62.5	63.125	63.7563	64.3938	65.0378	65.6881	66.345	67.0085	67.6786	68.3553	69.0389
						TEU	280.349	283.152	285.984	288.844	291.732	294.649	297.596	300.572	303.577	306.613	309.679
						TWS	85.6164	82.7039	79.9034	77.2069	74.6069	72.0967	69.6702	67.3216	65.0457	62.8379	60.6935
						RW	59.9315	59.5468	59.1285	58.6772	58.1934	57.6774	57.1295	56.5501	55.9393	55.2973	54.6242
45				improv	R-P2-I1	RCWU	62.5	61.8625	61.206	60.5302	59.8347	59.1193	58.3836	57.6273	56.85	56.0514	55.2311
				ement	-03	TEU	280.349	274.112	267.926	261.786	255.689	249.63	243.605	237.613	231.649	225.713	219.801

	EI	Popul ation	Entern al influen ce	O&M efficien cy	Scenari o	Reousrc es	0	1	2	3	4	5	6	7	8	9	10
						TWS	85.6164	94.0134	103.26	113.451	124.691	137.101	150.815	165.987	182.791	201.427	222.122
40				aggrav	R-P2-I2	RW	59.9315	63.9291	68.1517	72.6084	77.3084	82.2603	87.4725	92.9525	98.7071	104.742	111.061
40				ation	-01	RCWU	62.5	66.9375	71.6625	76.6927	82.0467	87.7444	93.8067	100.256	107.116	114.41	122.167
						TEU	280.349	304.266	330.143	565.577	616.435	671.932	765.411	834.843	910.817	994.027	1085.26
						TWS	85.6164	89.8973	94.3921	99.1117	104.067	109.271	114.734	120.471	126.494	132.819	139.46
17			Vag	maintai	R-P2-I1	RW	59.9315	62.9281	66.0745	69.3782	72.8471	76.4895	80.314	84.3297	88.5461	92.9734	97.6221
47			res	n	-02	RCWU	62.5	65.625	68.9063	72.3516	75.9691	79.7676	83.756	87.9438	92.341	96.958	101.806
						TEU	280.349	294.636	309.651	506.647	532.291	559.233	612.551	643.468	675.945	710.061	745.899
						TWS	85.6164	85.9793	86.3577	86.7481	87.1467	87.5498	87.9538	88.3547	88.7488	89.1318	89.4997
10				improv	R-P2-I1	RW	59.9315	61.9051	63.9047	65.9285	67.9744	70.0398	72.1221	74.218	76.3239	78.436	80.5497
40				ement	-03	RCWU	62.5	64.3125	66.15	68.0105	69.8916	71.7908	73.7053	75.6317	77.5664	79.5056	81.4447
						TEU	280.349	285.226	290.086	453.529	459.049	464.524	489.107	494.461	499.703	504.806	509.744
						TWS	171.233	180.864	191.085	201.945	213.498	225.803	238.927	252.946	267.942	284.012	301.261
40				aggrav	R-P3-I1	RW	119.863	122.987	126.116	129.245	132.369	135.482	138.578	141.65	144.689	147.686	150.63
49				ation	-01	RCWU	125	128.775	132.613	136.515	140.482	144.514	148.613	152.779	157.014	161.319	165.693
						TEU	560.697	584.807	609.79	635.688	662.548	690.419	719.357	749.424	780.685	813.218	847.103
						TWS	171.233	172.945	174.675	176.421	178.186	179.967	181.767	183.585	185.421	187.275	189.148
ΕŌ			No	maintai	R-P3-I1	RW	119.863	121.062	122.272	123.495	124.73	125.977	127.237	128.509	129.794	131.092	132.403
50			No	n	-02	RCWU	125	126.25	127.513	128.788	130.076	131.376	132.69	134.017	135.357	136.711	138.078
						TEU	560.697	566.304	571.967	577.687	583.464	589.299	595.192	601.143	607.155	613.226	619.359
						TWS	171.233	165.408	159.807	154.414	149.214	144.193	139.34	134.643	130.091	125.676	121.387
F 1				improv	R-P3-I1	RW	119.863	119.094	118.257	117.354	116.387	115.355	114.259	113.1	111.879	110.595	109.248
51				ement	-03	RCWU	125	123.725	122.412	121.06	119.669	118.239	116.767	115.255	113.7	112.103	110.462
		FO				TEU	560.697	548.223	535.852	523.573	511.378	499.26	487.211	475.226	463.299	451.426	439.602
		50				TWS	171.233	188.027	206.52	226.901	249.382	274.201	301.629	331.973	365.582	402.854	444.244
ΕQ				aggrav	R-P3-I2	RW	119.863	127.858	136.303	145.217	154.617	164.521	174.945	185.905	197.414	209.484	222.122
52				ation	-01	RCWU	125	133.875	143.325	153.385	164.093	175.489	187.613	200.512	214.231	228.821	244.334
						TEU	560.697	608.532	660.286	1131.15	1232.87	1343.86	1530.82	1669.69	1821.63	1988.05	2170.52
						TWS	171.233	179.795	188.784	198.223	208.135	218.541	229.468	240.942	252.989	265.638	278.92
БÒ			Vag	maintai	R-P3-I1	RW	119.863	125.856	132.149	138.756	145.694	152.979	160.628	168.659	177.092	185.947	195.244
55			res	n	-02	RCWU	125	131.25	137.813	144.703	151.938	159.535	167.512	175.888	184.682	193.916	203.612
						TEU	560.697	589.272	619.302	1013.29	1064.58	1118.47	1225.1	1286.94	1351.89	1420.12	1491.8
						TWS	171.233	171.959	172.715	173.496	174.293	175.1	175.908	176.709	177.498	178.264	178.999
EA				improv	R-P3-I1	RW	119.863	123.81	127.809	131.857	135.949	140.08	144.244	148.436	152.648	156.872	161.099
54				ement	-03	RCWU	125	128.625	132.3	136.021	139.783	143.582	147.411	151.263	155.133	159.011	162.889
						TEU	560.697	570.451	580.172	907.057	918.099	929.049	978.214	988.923	999.405	1009.61	1019.49

제 3 장 결론

기후변화, 물 부족, 인구 증가와 도시화로 인한 물 수요 증가, 수질 악화, 노후화된 인프 라와 같은 세계적인 물문제의 증가로 인해, 도시 물순환 시스템 관리는 더 큰 어려움을 겪고 있다. 취수, 도·송수, 정수처리, 배·급수, 용수 사용, 하수 집수, 하수 처리, 재이용 및 배출 과정을 포함하는 도시 물순환 시스템의 과정은 매우 에너지 집약적인 활동이며, 이 와 같은 에너지 소비는 탄소 배출과 양의 직접적인 상관관계가 있다. 따라서 자원 관리 및 데이터 관리를 최적화하기 위해 넥서스 관점의 접근법이 도시 물순환 시스템에 점차 적으로 도입되고 있는 추세이다.

도시 물순환 시스템 넥서스에서는 일반적으로 에너지 인텐시티로 표현되는 물을 위한 에너지를 이해하는 것이 중요하다. 에너지 인텐시티의 차이는 기후(연평균 강수량, 단기 기후 변동성, 기후 패턴 등), 지리적 특징(표고차, 평지비, 위치 등), 시스템 특성(총급수 량, 인구, 인구밀도, 관로 연장 등) 및 운영관리 효율(수압, 누수율, 에너지 효율 등)과 밀 접한 관계가 있다. 그리고 도시 물순환 시스템에서 자원의 사용 및 효율은 관리자가 제 어할 수 없는 기후변화와 도시화 등으로 변동되는 외부요소와 관리자의 노력 또는 부주 의로 인해 시스템을 개선 또는 악화되는 운영관리 효율변동에 영향을 받는다.

2차년도 연구에서는 기존 문헌에서 제시된 도시 물순환 시스템의 공정별 에너지 인텐시 티를 조사하여 에너지 인텐시티 매트릭스를 구축하였으며, 시스템 다이나믹스를 적용하 여 넥서스 모델을 개발하고, 여러 요인 및 시나리오에 따른 도시 물순환 시스템 내에서 자원의 양적·질적 사용을 분석하였으며, 현재 도시의 상태를 벤치마킹 할 수 있는 가이드 라인을 제시하였다. 이를 통하여 넥서스 관점에서 도시 물순환 시스템의 효율적인 관리 전략 및 실행 계획을 도출하는 것을 연구 목적으로 하였으며, 그 결과는 아래와 같다.

첫번째로 문헌에서 제시된 도시 물순환 시스템의 공정별 에너지 인텐시티를 조사하여 에 너지 인텐시티 매트릭스를 구축하였다. 도시물순환 시스템 전체 시스템, 상수 시스템, 하 수 시스템의 에너지 인텐시티 중앙값은 각각 1.210 kWh/m³, 0.519 kWh/m³, 0.580 kWh/m³ 의 값을 나타내었다. 각각의 공정들을 살펴보면 기후변화와 같은 외부 영향에 의해 수자 원이 부족할 경우 도입되는 담수화와 물 재이용은 많은 에너지를 필요로 하는 것으로 파 악되었다. 담수화와 용수 재이용 공정의 중앙값은 각각 3.170 kWh/m³, 0.820 kWh/m³으로 용수 사용을 제외하고 가장 높은 값을 나타내었다. 정수처리와 하수처리와 같은 처리 공 정과 펌프 에너지를 필요로 하는 지하수 취수, 도수, 배·급수 공정에서 일정부분 이상의 에너지를 필요로 함을 알 수 있었다. 그리고 중력을 이용하는 경우가 많은 하수 집수와 방류 시 필요 에너지는 매우 낮은 값을 나타내었다.

두 번째로 도시 물순환 시스템 내 변수들의 변동에 따른 물 사용량(총 사용수량, 유수수 량, 실 사용수량)과 에너지 사용량(총 에너지 사용량), 그리고 그에 따른 다양한 에너지 인텐시티(총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티, 실 사용수량 에너지 인텐시티)의 변화를 분석하였다. 인구의 증가에 모든 에너지 인텐시티들은 동일한 기울기 값을 나타내는 지점으로 이동하였다. 취수원의 비율 및 에너지 인텐시티의 여건에 따라 서 각각의 인텐시티들의 궤적은 수직 방향으로 이동하였다. 그러나 누수율의 변동에 따 라서는 총 사용수량 에너지 인텐시티는 기존의 인텐시티 값보다 낮은 기울기의 선에 따 라 이동하였고, 유수수량 에너지 인텐시티는 거의 수직으로 이동하였으며, 실 사용수량 에너지 인텐시티는 수직으로 이동하였다. 이를 통해 총 사용수량과 에너지 사용량을 분 석하는 경우 양적인 측면 분석에서는 적합한 방법이지만 효율적인 측면에서는 왜곡된 현 상이 나타남을 확인 할 수 있었다. 효율 측면을 고려할 경우 실 사용수량 에너지 인텐시 티가 적합한 것으로 판단되었다. 변수의 변동에 따른 물과 에너지 자원 사용의 양적인 측면과 질적인 측면의 변화를 파악할 수 있으며, 넥서스 관점에서 어떻게 도시 물순환 시스템을 관리해야 하는지에 대한 일차적인 방향을 제시할 수 있다.

세 번째로는 기존 문헌들에서 제시된 도시 물순환 시스템의 각 단계별 에너지 인텐시티 값에 따라서 총 사용수량 에너지 인텐시티, 유수수량 에너지 인텐시티 및 실 사용수량 에너지 인텐시티 관점에서 도시를 분류하였다. 분석된 결과에 따른 총 사용수량, 유수수 량 및 실 사용수량 에너지 인텐시티 관점의 도시를 크게 뛰어남(Excellent), 좋음(Good), 좋지 않음(Poor), 나쁨(Bad)의 4가지 단계로 구분하였다. 제시된 도시 분류 가이드라인은 분석 대상 도시의 현재 도시 물순환 시스템의 물-에너지 넥서스 관점에서 자원의 효율적 인 이용 수준을 파악하고 전 세계 다른 도시와 비교하는데 유용할 것이다.

마지막으로 해당 도시의 여건에 따라서 도시 물순환 시스템의 외부 영향 및 운영효율 변 동 시나리오에 따른 물-에너지 자원의 사용량 및 효율의 변동을 10년 기간 동안 분석하 였다. 이와 같이 결과를 통해 부정적인 외부 영향은 도시 물순환 시스템의 효율적인 측 면을 악화시키며, 부정적인 운영 효율은 양적인 측면에서 악영향을 미치는 것을 알 수 있었다. 그리고 시간에 따른 도시의 효율 변동의 궤적을 추적할 수 있어 영향 및 도입되 는 전략의 효율을 평가할 수 있다. 이에 따라 도시 여건, 외부영향 및 운영효율 변동 시 나리오 분석 결과를 통해 도시 물순환 시스템 관련 의사 결정권자는 본인들의 시스템이 어떻게 변동될지 예측할 수 있으며, 이에 따라 효율적인 전략 및 프로그램을 수립할 수 있다.

도시 물순환 시스템 내에서 물과 에너지를 효율적으로 사용하기 위해 새로운 관리 접근 법이 필요하다. 도시 물순환 시스템의 넥서스 개념은 궁극적인 목표에 도달하기 위해 부 문 간의 실제 상호연계를 정량화하고 평가할 수 있기 때문에 지난 몇 년 동안 정부, 산 업 및 연구자들에 의해 유익한 접근법으로 확인되었다. 앞으로 도시 물순환 시스템에서 전체적인 넥서스 관점을 도입하기 위해서는 아래와 같은 중요한 문제를 해결해야 한다.

해당 지역 및 개별 넥서스 모델은 다양한 데이터와 정보를 요구하며, 각각의 모델의 장

점과 제한사항은 서로 다르다. 이러한 모델은 특정 조건에서만 유효하며 특정 제약 조건 하에서 합리적인 결과를 도출한다. 따라서 모든 고유한 넥서스 사례에 대응하기는 어렵 지만 다양한 이해관계자의 조치를 평가하고, 조정하며, 의사결정을 용이하게 하기 위해 포괄적이고, 다용도적이며, 실용적이고, 널리 받아들여지는 넥서스 프레임워크와 방법론 을 개발해야 한다.

그리고 현재 넥서스 개념이 학계, 기업, 기관, 정부 등에서 인기를 끌고 있지만, 연구 결 과를 현장에서 적용하기 위한 방법은 많이 제시되지 않고 있다. 기존의 많은 연구가 넥 서스 관점에서 통찰력을 제공하는 것을 목표로 하는 반면, 거버넌스와 실현을 지원하기 위한 연구는 부족한 실정이다. 따라서 넥서스 관점을 단순히 이해하는 것이 아니라 적용 에 대한 연구가 향후 넥서스 연구의 중심 초점이 되어야 하며, 넥서스 연구가 지속적인 관심을 받기 위해서는 적용 단계에서 실질적인 성과를 입증할 필요가 있다.

참 고 문 헌

- AG-DSEWPC. Moving water long distances: grand schemes or pipe dreams. [Online] Canberra: Dept. of Sustainability, Environment, Water, Population and Communities 2010; 2013. < <u>http://www.environment.gov.au/water/publications/action/pubs/moving-wate</u> r.pdf>.
- Aguilar, C., White, D. J., & Ryan, D. L. (2005). Domestic water heating and water heater energy consumption in Canada. Canadian Building Energy End-Use Data and Analysis Centre, 82.
- Al-Karaghouli, A., & Kazmerski, L. L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343-356.
- Amores, M. J., Meneses, M., Pasqualino, J., Antón, A., & Castells, F. (2013). Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. Journal of cleaner production, 43, 84-92.
- Anderson, J. M. (2006). Integrating recycled water into urban water supply solutions. Desalination, 187(1-3), 1-9.
- Angelakis, A. N., & Gikas, P. (2014). Water reuse: overview of current practices and trends in the world with emphasis on EU states. Water Utility Journal, 8(67), e78.
- Apostolidis, N. (2010). Australian experience in water and energy footprints. Water Practice and Technology, 5(4).
- Arpke, A., & Hutzler, N. (2006). Domestic water use in the United States: A life cycle approach. Journal of Industrial Ecology, 10(1 2), 169-184.
- Asano, T., Burton, F. L., Leverenz, H. L., Tsuchihashi, R., and Tchobanoglous, G. (2007). Water Reuse: Issues, technologies, and applications. Metcalf and Eddy, New York.

- Bagley, D., Andrews, R., Adams, B., & Karney, B. (2005, April). Development of sustainable water systems for urban areas: A human hydrologic cycle approach. In Proceedings of the 33rd Canadian Society for Civil Engineering Annual Conference on Infrastructure Technologies, Management and Policy, CSCE, Toronto.
- Bennett, B., L. Park and R. Wilkinson. (2010b). Embedded Energy in Water Studies: Statewide and Regional Water- Energy Relationship. California Public Utilities Commission.
- Bennett, B., Park, L., & Wilkinson, R. (2010a). Embedded energy in water studies: Water agency and function component study and embedded energy- water load profiles. California Public Utilities Commission.
- Buckley, C., Friedrich, E., & Von Blottnitz, H. (2011). Life-cycle assessments in the South African water sector: A review and future challenges. Water Sa, 37(5), 719-726.
- Buonomenna, M. G. (2013). Membrane processes for a sustainable industrial growth. RSC advances, 3(17), 5694-5740.
- California Energy Commission (CEC). (2013). Refining estimates of water related energy use in California. Final project report; 2006. Available at: <http://www.energy.ca.gov/pier/project_reports/CEC-500-2006-118.html> [Consult ado July 2013].
- California Energy Commission. (2006). 2006 California Commercial End-Use Survey (CEUS). California Energy Commission.
- CEC (Klein, G., M. Krebs, V. Hall, T. O'Brien and B. Blevins). "California's Water - Energy Relationship." California Energy Commission (2005).
- Cheng, C. L. (2002). Study of the inter-relationship between water use and energy conservation for a building. Energy and buildings, 34(3), 261-266.
- Cheng, C. L. (2002). Study of the inter-relationship between water use and energy conservation for a building. Energy and buildings, 34(3), 261-266.

- Chhipi-Shrestha, G. K. (2017). Water-energy-carbon nexus: a system dynamics approach for assessing urban water systems (Doctoral dissertation, University of British Columbia).
- Chhipi-Shrestha, G. K., Hewage, K., & Sadiq, R. (2015). System dynamics modelling for an urban water system: Net-zero water analysis for Peachland (BC).
- China Urban Water Association. (2012). China urban water supply yearbook.
- Chiplunkar, A., Seetharam, K. E., & Tan, C. K. (2012). Good practices in urban water management: decoding good practices for a successful future. Asian Development Bank.
- Christoforidou, P., Bariamis, G., Iosifidou, M., Nikolaidou, E., & Samaras, P. (2020). Energy benchmarking and optimization of wastewater treatment plants in Greece. In Environmental Sciences Proceedings (Vol. 2, No. 1, p. 36). Multidisciplinary Digital Publishing Institute.
- Chu, C. (2017). Water-energy nexus in China and its implications for regional water and energy self-sufficiency. University of Delaware.
- City of San Diego. (2015). Climate Action Plan. San Diego, California.
- City West Water. (2014). Annual Report for the year ended. Victoria, Australia.
- Cohen, R., Wolff, G., & Nelson, B. (2004). Energy down the drain. Water Supply.
- Cooley, H., Gleick, P. H., & Wolff, G. H. (2006). Desalination, with a grain of salt: a California perspective.
- Corominas, J. (2010). Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del agua, 17(3), 219-233.
- Cramwinckel, J. F. (2006). Water and energy nexus Role of technology.
- Crook, J., Mosher, J. J., & Casteline, J. M. (2005). Status and role of water reuse: An international view. London, UK.: Global Water Research Coalition.

- Dale, L. (2004). Electricity price and Southern California's water supply options. Resources, conservation and recycling, 42(4), 337-350.
- Danish Water and Waste Water Association. (2014). Water in figures 2014: DANVA Benchmarking 2014 - process benchmaring and statistics. Dansk Vand- og Splidevandsforening (DANVA).
- Dimitriadis, S. (2005). Issues encountered in advancing Australia's water recycling schemes.
- Drewes, J. E., Patricio Roa Garduño, C., & Amy, G. L. (2012). Water reuse in the Kingdom of Saudi Arabia - status, prospects and research needs. Water Science and Technology: Water Supply, 12(6), 926-936.
- DSEWPaC. (2012). Progress against the national target of 30% of Australia's wastewater being recycled by 2015. Canberra.
- Duan, C., & Chen, B. (2016). Energy-water-carbon nexus at urban scale. Energy procedia, 104, 183-190.
- Electric Power Research Institute (EPIR)., & Water Research Foundation (WRF)., (2013). Electricity Use and Management in the Municipal Water Supply and Wastewater Industries., Canada.
- Electric Power Research Institute (EPRI). (2002). Water and Sustainability: U.S. Electricity Consumption for Water Supply & Treatment–The Next Half Century, EPRI, Palo Alto, CA: 2000. 1006787.
- Eltawil, M. A., Zhengming, Z., & Yuan, L. (2008, March). Renewable energy powered desalination systems: technologies and economics-state of the art. In Twelfth international water technology conference, IWTC12 (pp. 1-38).
- EPA. (2008). Energy: Leveraging Voluntary Programs to Save Both Water and Energy. Environmental Protection Agency.
- Escriva Bou, A., Lund, J. R., & Pulido Velazquez, M. (2018). Saving energy from urban water demand management. Water Resources Research, 54(7),

- EU. (2015). Optimising water reuse in the EU: Final report Part I. Luxembourg.
- EU. (2016). EU-level instruments on water reuse. Final Report to Support the Commission's Impact. Assessment, 1-292.
- Friedrich, E. (2002). Life-cycle assessment as an environmental management tool in the production of potable water. Water Science and Technology, 46(9), 29-36.
- Friedrich, E., Pillay, S., & Buckley, C. A. (2009). Carbon footprint analysis for increasing water supply and sanitation in South Africa: a case study. Journal of Cleaner Production, 17(1), 1-12.
- Fritzmann, C., Löwenberg, J., Wintgens, T., & Melin, T. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1-3), 1-76.
- GAO (2011). Energy-Water Nexus: Amount of Energy Needed to Supply, Use, and Treat Water Is Location-Specific and Can Be Reduced by Certain Technologies and Approaches. DIANE Publishing.
- GEI Consultants & Navigant Consulting. (2010). Embedded Energy in Water Studies - Study 2: Water Agency and Function Component Study and Embedded Energy-Water Load Profiles. California Public Utilities Commission Energy Division.
- Gleick, P. H. (1993). Water in crisis. Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute, Oxford Univ. Press. 473p, 9, 1051-0761.
- Gleick, P. H. (1994). Water and energy. Annual Review of Energy and the environment, 19(1), 267-299.
- Gleick, P. H. (2009). Facing down the hydro-crisis. World Policy Journal, 26(4), 17-23.

- Gleick, P. H., & Cooley, H. S. (2009). Energy implications of bottled water. Environmental Research Letters, 4(1), 014009.
- Goldner, F. S. (1994). Energy use and domestic hot water consumption-Phase 1. Final report (No. NYSERDA-94-19). New York State Energy Research and Development Authority, New York, NY (United States); Energy Management and Research Associates, Brooklyn, NY (United States).
- Goldstein, R., & Smith, W. (2002). Water & sustainability (volume 4): US electricity consumption for water supply & treatment-the next half century. Electric Power Research Institute.
- Gómez, Á. P. N., López, E. P., Solar, D. A., Benito, S. C., Escuder-Bueno, I., Andrés-Doménech, I., ... & Duffy, A. (2015). Report on energy in the urban water cycle.
- Griffiths-Sattenspiel, B., & Wilson, W. (2009). The carbon footprint of water. River Network, Portland.
- Griffiths-Sattenspiel, B., & Wilson, W. (2009). The carbon footprint of water. River Network, Portland.
- Gruenspecht, H. K., Chaudhry, S., Hightower, M. M., Richenderfer, J., & Wright, T. J. C. (2010). The energy water Nexus: availability and impacts. In EIA energy conferences and presentations.
- Gude, V. G. (2011). Energy consumption and recovery in reverse osmosis. Desalination and water treatment, 36(1-3), 239-260.
- Gude, V. G., Nirmalakhandan, N., & Deng, S. (2010). Renewable and sustainable approaches for desalination. Renewable and sustainable energy reviews, 14(9), 2641-2654.
- Guillamón Álvarez, J. (2007). Trasvase y desalación, las cifras y las cuentas. Boletín, (3).
- Hardy, L., Garrido, A., & Juana, L. (2012). Evaluation of Spain's water-energy nexus. International Journal of Water Resources Development, 28(1), 151-170.

- Hu, G., Ou, X., Zhang, Q., & Karplus, V. J. (2013). Analysis on energy water nexus by Sankey diagram: the case of Beijing. Desalination and Water Treatment, 51(19-21), 4183-4193.
- Huang, C., Li, Y., Li, X., Wang, H., Yan, J., Wang, X., ... & Li, F. (2018). Understanding the water-energy nexus in urban water supply systems with city features. Energy Procedia, 152, 265-270.
- Huang, C., Li, Y., Li, X., Wang, H., Yan, J., Wang, X., ... & Li, F. (2018). Understanding the water-energy nexus in urban water supply systems with city features. Energy Procedia, 152, 265-270.
- Hussien, W., Memon, F. A., & Savic, D. A. (2017). An integrated model to evaluate water-energy-food nexus at a household scale. Environmental modelling & software, 93, 366-380.
- Kenway, S. J., Priestley, A., Cook, S., Seo, S., Inman, M., Gregory, A., & Hall, M. (2008). Energy use in the provision and consumption of urban water in Australia and New Zealand. Water Services Association of Australia (WSAA): Sydney, Australia.
- Klein, G., Krebs, M., Hall, V., O'Brien, T., & Blevins, B. (2005). California's Water - Energy Relationship. California, USA.
- Kneppers, B., Birchfield, D., & Lawton, M. (2009). Energy-water relationships in reticulated water infrastructure systems. Water Supply (kWh/Capita), 76(20.86), 75-15.
- Lam, K. L., Kenway, S. J., & Lant, P. A. (2017). Energy use for water provision in cities. Journal of cleaner production, 143, 699-709.
- Lam, K. L., Lant, P. A., O'Brien, K. R., & Kenway, S. J. (2016). Comparison of water-energy trajectories of two major regions experiencing water shortage. Journal of environmental management, 181, 403-412.
- Lassaux, S., Renzoni, R., & Germain, A. (2007). Life Cycle Assessment of Water: From the pumping station to the wastewater treatment plant (9 pp). The

International Journal of Life Cycle Assessment, 12(2), 118-126.

- Lautze, J., Stander, E., Drechsel, P., da Silva, A. K., & Keraita, B. (2014). Global experiences in water reuse. CGIAR Research Program on Water, Land and Ecosystems (WLE). International Water Management Institute (IWMI), Colombo, Sri Lanka, 31.
- Lee, J., & Kim, H. (2021). Regional dimensions of the South Korean water-energy nexus. Energy & Environment, 32(4), 722-736.
- Lee, M., Keller, A. A., Chiang, P. C., Den, W., Wang, H., Hou, C. H., ... & Yan, J. (2017). Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied energy, 205, 589-601.
- Lemos, D., Dias, A. C., Gabarrell, X., & Arroja, L. (2013). Environmental assessment of an urban water system. Journal of Cleaner Production, 54, 157-165.
- Lesjean, B., & Luck, F. (2011). Assessment of the membrane bioreactor technology and European market outlook. IDS water-white paper Koch KWB Gm BH.
- Li, X., Liu, J., Zheng, C., Han, G., & Hoff, H. (2016). Energy for water utilization in China and policy implications for integrated planning. International Journal of Water Resources Development, 32(3), 477-494.
- Liu, J., Zang, C., Tian, S., Liu, J., Yang, H., Jia, S., ... & Zhang, M. (2013). Water conservancy projects in China: Achievements, challenges and way forward. Global Environmental Change, 23(3), 633-643.
- Lofman, D., Petersen, M., & Bower, A. (2002). Water, energy and environment nexus: The California experience. International Journal of Water Resources Development, 18(1), 73-85.
- Los Angeles Department of Water and Power. (2011). Urban Water Management Plan 2010. Los Angelas, California.

Loubet, P., Roux, P., Loiseau, E., & Bellon-Maurel, V. (2014). Life cycle

assessments of urban water systems: A comparative analysis of selected peer-reviewed literature. Water Research, 67, 187-202.

- Lundie, S., Peters, G. M., & Beavis, P. C. (2004). Life cycle assessment for sustainable metropolitan water systems planning.
- Maas, C. (2009). Greenhouse gas and energy co-benefits of water conservation. POLIS Project on Ecological Governance, University of Victoria.
- Maas, C. (2010). Ontario's Water-Energy Nexus: Will We Find Ourselves in Hot Water... or Tap into Opportunity?. POLIS Project on Ecological Governance, University of Victoria.
- Maddocks, A., Young, R. S., & Reig, P. (2015, August 26). Ranking the world's most water-stressed countries in 2040. World Resources Institute. Retrieved April 4, 2022, from https://www.wri.org/insights/ranking-worlds-most-water-stressed-countries-204 0
- Majid, A., Cardenes, I., Zorn, C., Russell, T., Colquhoun, K., Bañares-Alcantara, R., & Hall, J. W. (2020). An analysis of electricity consumption patterns in the water and wastewater sectors in South East England, UK. Water, 12(1), 225.
- Marsh, D. M. (2008). The water-energy nexus: a comprehensive analysis in the context of New South Wales (Doctoral dissertation).
- Martin, D. L., Dorn, T. W., Melvin, S. R., Corr, A. J., & Kranz, W. L. (2011, February). Evaluating energy use for pumping irrigation water. In Proceedings of the 2011 Central Plains irrigation conference, Burlington, Colorado, February 22-23. Colorado State University. Libraries.
- McMahon, J. E., & Price, S. K. (2011). Water and energy interactions. Annual review of environment and resources, 36, 163-191.
- MDPS. (2016). Water statistics in the state of Qatar 2013. Ministry of Development Planning and Statistics, Doha, Qatar.

- Miller, L. A., Ramaswami, A., & Ranjan, R. (2013). Contribution of water and wastewater infrastructures to urban energy metabolism and greenhouse gas emissions in cities in India. Journal of Environmental Engineering, 139(5), 738-745.
- Miller, L. A., Ramaswami, A., & Ranjan, R. (2013). Contribution of water and wastewater infrastructures to urban energy metabolism and greenhouse gas emissions in cities in India. Journal of Environmental Engineering, 139(5), 738-745.
- Mizuta, K., & Shimada, M. (2010). Benchmarking energy consumption in municipal wastewater treatment plants in Japan. Water Science and Technology, 62(10), 2256-2262.
- Mo, W., Wang, R., & Zimmerman, J. B. (2014). Energy water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California. Environmental science & technology, 48(10), 5883-5891.
- Mo, W., Wang, R., & Zimmerman, J. B. (2014). Energy water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California. Environmental science & technology, 48(10), 5883-5891.
- Muñoz, I., Milà i Canals, L., & Fernández Alba, A. R. (2010). Life cycle assessment of water supply plans in Mediterranean Spain: the Ebro river transfer versus the AGUA Programme. Journal of Industrial Ecology, 14(6), 902-918.
- Nair, S., George, B., Malano, H. M., Arora, M., & Nawarathna, B. (2014). Water energy - greenhouse gas nexus of urban water systems: Review of concepts, state-of-art and methods. Resources, Conservation and Recycling, 89, 1-10.
- National Research Council (NRC). (2008). Desalination: A national perspective. National Academies Press.
- Navigant Consulting. (2006). REFINING ESTIMATES OF WATER-RELATED ENERGY USE IN CALIFORNIA.

- Navigant Consulting. (2014). Water-Energy Cost Effectiveness Analysis: Public Workshop Presentation of Work Plan.
- NEEA. (2001). Pacific north wastewater and wastewater market assessment. Market research report, 01-079. NEEA
- NSW Government. (2012). Sydney Catchment Authority Answers to Questions on Notice.
- Olsson, G. (2012). ICA and me a subjective review. Water research, 46(6), 1585-1624.
- Olsson, G. (2015). Water and energy: threats and opportunities. IWA publishing.
- Pelli, T., & Hitz, H. U. (2000). Energy indicators and savings in water supply. Journal American Water Works Association, 92(6), 55-62.
- Peña-Guzmán, C. A., Melgarejo, J., Prats, D., Torres, A., & Martínez, S. (2017). Urban water cycle simulation/management models: A review. Water, 9(4), 285.
- Plappally, A. K. & Lienhard, V. (2012). Energy requirements for water production, treatment, end use, reclamation, and disposal. Renewable and Sustainable Energy Reviews, 16(7), 4818-4848.
- Porse, E., Mika, K. B., Escriva-Bou, A., Fournier, E. D., Sanders, K. T., Spang, E., ... & Pincetl, S. (2020). Energy use for urban water management by utilities and households in Los Angeles. Environmental Research Communications, 2(1), 015003.
- Poussade, Y., Vince, F., & Robillot, C. (2011). Energy consumption and greenhouse gases emissions from the use of alternative water sources in South East Queensland. Water Science and Technology: Water Supply, 11(3), 281-287.
- Racoviceanu, A. I., Karney, B. W., Kennedy, C. A., & Colombo, A. F. (2007). Life-cycle energy use and greenhouse gas emissions inventory for water

treatment systems. Journal of Infrastructure Systems, 13(4), 261-270.

- Radcliffe, J. C. (2004). Water recycling in Australia: a review undertaken by the Australian academy of technological sciences and engineering. Australian Academy of Technological Sciences and Engineering.
- Raluy, R. G., Serra, L., & Uche, J. (2005). Life cycle assessment of water production technologies-part 1: life cycle assessment of different commercial desalination technologies (MSF, MED, RO)(9 pp). The International Journal of Life Cycle Assessment, 10(4), 285-293.
- Renzoni, R., & Germain, A. (2007). Life Cycle Assessment of Water: From the pumping station to the wastewater treatment plant (9 pp). The International Journal of Life Cycle Assessment, 12(2), 118-126.
- Rocheta, E., & Peirson, W. (2011). Urban water supply in a carbon constrained Australia. UNSW Water Research Centre.
- Rothausen, S. G., & Conway, D. (2011). Greenhouse-gas emissions from energy use in the water sector. Nature Climate Change, 1(4), 210-219.
- Sala, L. (2007). Balances energéticos del ciclo de agua y experiencias de reutilización planificada en municipios de la Costa Brava. Seminario Agua, Energīta y Cambio Climático, Universidad Politécnica, Valencia.
- Sala, L., & Serra, M. (2004). Towards sustainability in water recycling. Water Science and Technology, 50(2), 1-7.
- Sanders, K. T., & Webber, M. E. (2012). Evaluating the energy consumed for water use in the United States. Environmental Research Letters, 7(3), 034034.
- Sanjuan-Delmás, D., Petit-Boix, A., Gasol, C. M., Farreny, R., Villalba, G., Suárez-Ojeda, M. E., ... & Rieradevall, J. (2015). Environmental assessment of drinking water transport and distribution network use phase for small to medium-sized municipalities in Spain. Journal of cleaner production, 87, 573-582.

Sanjuan-Delmás, D., Petit-Boix, A., Gasol, C. M., Farreny, R., Villalba, G.,

Suárez-Ojeda, M. E., ... & Rieradevall, J. (2015). Environmental assessment of drinking water transport and distribution network use phase for small to medium-sized municipalities in Spain. Journal of cleaner production, 87, 573-582.

- Schaefer, K., Exall, K., & Marsalek, J. (2004). Water reuse and recycling in Canada: a status and needs assessment. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 29(3), 195-208.
- Schroeder, E., Tchobanoglous, G., Leverenz, H. L., & Asano, T. (2012). Direct potable reuse: Benefits for public water supplies, agriculture, the environment, and energy conservation. National Water Research Institute White Paper.
- Schroeder, J. (2012). S-127: ISEE Symposia: Improving the Linkages between Air Pollution Epidemiology, Qualitative Science Assessment, and Quantitative Risk Assessment. Epidemiology, 23(5S).
- Scott, C., Pasqualetti, M., Hoover, J., Garfin, G., Varady, R., & Guhathakurta, S. (2009). Water and Energy Sustainability with Rapid Growth and Climate Change in the Airzona-Sonora Border Region. A Report to the Arizona Water Institute: Temple, AZ, USA.
- Sharma, A. K., Gray, S., Diaper, C., Liston, P., & Howe, C. (2008). Assessing integrated water management options for urban developments Canberra case study. Urban Water Journal, 5(2), 147-159.
- Shrestha, S. (2015). Water-Energy-Carbon Nexus in Cities: Cases from Bangkok, New Delhi, Tokyo. Water Energy Food Nexus: International Cooperation and Technology Transfer; Asian Institute of Technology: Paris, France.
- Siddiqi, A., & Anadon, L. D. (2011). The water energy nexus in Middle East and North Africa. Energy policy, 39(8), 4529-4540.
- Siddiqi, A., & de Weck, O. L. (2013). Quantifying end-use energy intensity of the urban water cycle. Journal of Infrastructure Systems, 19(4), 474-485.
- Smith, K., Liu, S., & Chang, T. (2016). Contribution of urban water supply to greenhouse gas emissions in China. Journal of Industrial Ecology, 20(4),

- Stillwell, A. S., King, C. W., Webber, M. E., Duncan, I. J., & Hardberger, A. (2009). Energy-water nexus in Texas. The University of Texas at Austin Environmental Defense Fund.
- Stillwell, A. S., King, C. W., Webber, M. E., Duncan, I. J., & Hardberger, A. (2011). The energy-water nexus in Texas. Ecology and Society, 16(1).
- Stokes, J. R., & Horvath, A. (2009). Energy and air emission effects of water supply.
- Swan, L. G. (2010). Residential sector energy and GHG emissions model for the assessment of new technologies.
- Sydney Metropolitan Catchment Management Authority. (2006). Annual Report. Sydney Metropolitan Catchment Management Authority, Australia.
- Sydney Metropolitan Catchment Management Authority. (2010). Annual Report. Sydney Metropolitan Catchment Management Authority, Australia.
- Sydney Water. (2012). Sydney Water Operating License Environment Report: Environment Plan 2011-16 Annual Report Environmental Indicators Report 2011-12. Sydney Water, Australia.
- Tan, D., Hu, F., Thieriot, H., & McGregor, D. (2015). Towards a water & energy secure China. China Water Risk.
- Twomey, K. M., & Webber, M. E. (2011, January). Evaluating the energy intensity of the US public water system. In Energy Sustainability (Vol. 54686, pp. 1735-1748).
- Van Dijk, A. I., Beck, H. E., Crosbie, R. S., de Jeu, R. A., Liu, Y. Y., Podger, G. M., ... & Viney, N. R. (2013). The Millennium Drought in southeast Australia (2001 2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resources Research, 49(2), 1040-1057.

Venkatesh, G., & Brattebø, H. (2011). Energy consumption, costs and

environmental impacts for urban water cycle services: Case study of Oslo (Norway). Energy, 36(2), 792-800.

- Venkatesh, G., Chan, A., & Brattebø, H. (2014). Understanding the water-energy-carbon nexus in urban water utilities: comparison of four city case studies and the relevant influencing factors. Energy, 75, 153-166.
- Vieira, A. S., Beal, C. D., Ghisi, E., & Stewart, R. A. (2014). Energy intensity of rainwater harvesting systems: A review. Renewable and Sustainable Energy Reviews, 34, 225-242.
- Von Medeazza, G. M. (2005). "Direct" and socially-induced environmental impacts of desalination. Desalination, 185(1-3), 57-70.
- WABAG. (2016). "Project: Windhoek Goreangab, Water Reclamation Plant, Namibia." VATECH WABAG Limited, Chennai, India, http://www.wabag.com/wabagprojects/windhoek-goreangab-water-reclamatio n-pla> (Jan. 5, 2016).
- Wakeel, M., Chen, B., Hayat, T., Alsaedi, A., & Ahmad, B. (2016). Energy consumption for water use cycles in different countries: A review. Applied Energy, 178, 868-885.
- Wang, H., Yang, Y., Keller, A. A., Li, X., Feng, S., Dong, Y. N., & Li, F. (2016). Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Applied Energy, 184, 873-881.
- Wang, L., Chen, D., Liu, W., Ma, Y., Wu, Y., & Deng, Z. (2012). DDDAS-based parallel simulation of threat management for urban water distribution systems. Computing in Science & Engineering, 16(1), 8-17.
- Water in the West. (2013). Water and Energy Nexus: A Literature Review. Stanford University, California.
- Webber, M. E. (2011, November). The nexus of energy and water in the United States. In AIP Conference Proceedings (Vol. 1401, No. 1, pp. 84-106). American Institute of Physics.

WEF. (2009). Energy Conservation in Water and Wastewater Facilities.

- Western Resource Advocates. (2009). Water Conservation = Energy Conservation: A Report for the CWCB, Western Resource Advocates Stacy Tellinghuisen. Energy/Water Analyst.
- WHO. (2005). A regional overview of wastewater management and reuse in the Eastern Mediterranean Region A regional overview of and reuse in the Eastern Mediterranean Region. WHO, Cairo.
- Wilkinson, R. (2000). Methodology for analysis of the energy intensity of California's water systems and an assessment of multiple potential benefits through integrated water-energy efficiency measures. University of California Santa Barbara.
- World Bank Group. (2018, July 18). Thirsty Energy: Securing Energy in a water-constrained world. World Bank. Retrieved April 4, 2022, from https://www.worldbank.org/en/topic/water/brief/water-energy-nexus#:~:text= Water%20and%20energy%20are%20interlinked,to%20extracting%20and%20proces sing%20fuels.
- WRI. (2014). Water Energy Nexus of Urban Water Systems for Chengdu's Low-Carbon Blueprint. World resources institute. http://www. wri. org. cn/Chengduwater.
- Xie, J. (2009). Addressing China's water scarcity: recommendations for selected water resource management issues.
- Yang, H., Yang, D., Lei, Z., & Sun, F. (2008). New analytical derivation of the mean annual water energy balance equation. Water resources research, 44(3).
- Yang, L., Zeng, S., Chen, J., He, M., & Yang, W. (2010). Operational energy performance assessment system of municipal wastewater treatment plants. Water Science and Technology, 62(6), 1361-1370.
- Younos, T., & Tulou, K. E. (2005). Overview of desalination techniques. Journal of Contemporary Water Research & Education, 132(1), 3-10.

- Zappone, M., Fiore, S., Genon, G., Venkatesh, G., Brattebø, H., & Meucci, L. (2014). Life cycle energy and GHG emission within the turin metropolitan area urban water cycle. Procedia Engineering, 89, 1382-1389.
- Zhou, Y., Chang, C. C., Ni, Y., Li, J., Wei, S., & Zhang, Y. (2011, May). Status and development for municipal wastewater reuse in China. In 2011 International Symposium on Water Resource and Environmental Protection (Vol. 4, pp. 3183-3186). IEEE.